PENGARUH BIOCHAR SERBUK KAYU DURIAN TERHADAP KARAKTERISTIK TANAH SULFAT MASAM DALAM MENGURANGI EMISI GAS METANA

Evy Setiawati, Sugeng Prijono, Diah Mardiana, S Soemarno

Abstract


Organic matter in the soil can provide nutrients to plants. The objectives of this study were to analyze soil characteristics after incubation using biochar at various doses, and to calculate the reduction of methane gas emissions from incubated soils. The treatments were (1) soil control (T0); (2) 4 t ha-1 biochar + soil (T1); (3) 8 t ha-1 biochar + soil (T2); (4) 12 t ha-1 biochar + soil (T3); (5) 16 t ha-1 biochar + soil (T4); (6) 20 t ha-1 biochar + soil (T5). The soil of each treatment was incubated for 30, 60, and 90 days. Observations were made on pH, exchangeable cations (Ca, Mg, K, Na) and cation exchange capacity (CEC). Methane gas emissions were measured at 30, 60, and 90 days after planting. The percentage increase in incubation soil pH for 30 days was 3.13-48.71%, 60 days was 3.06-21.26%, and 90 days was 0.41-28.26%. CEC also increased from 28.83 to 37.46 me 100 g-1 (29.95%) at 30 days, 27.63-36.16 me 100 g-1 (30.86%) at 60 days, and 26.07-35.01 me 100 g-1 (34.28%) at 90 days. Exchangeable Ca, and Mg was not significantly different for all biochar doses and incubation times. The reduction in methane gas emissions ranged from 9.57-18.08% (30 days); 33.13-35.23% (60 days); and 46.08-73.25% (90 days).

Keywords


acid sulphate soil; biochar; incubation; methane gas

Full Text:

PDF

References


Ajayi, A.E. and Horn, R. 2016. Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar. Soil & Tillage Research(164), 34-44.

Asai,H., Samson, K.B., Stephan, M.H., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T. and Horie, T. 2009. Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research 111, 81-84.

Balingtan. 2016. Laporan tahun 2015 Balai Penelitian Lingkungan Pertanian. Pati.

Balittra. 2011. Potensi luas lahan dan penyebarannya, setengah abad balittra-rawa lumbung pangan menghadapi perubahan iklim. Balai Penelitian Pertanian Lahan Rawa, Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian. Badan Litbang Pertanian. Kementerian Pertanian.

BPS Prov Kalsel. 2010. Kalimantan Selatan dalam angka. Biro Pusat Statistik Provinsi Kalimantan Selatan.

Brady, N.C. and Weil, R.R. 2008. Thenature and properties of soils (14th ed.). Pearson Prentice Hall, New Jersey, USA, 990 p.

Carter, S., Shackley, S., Sohi, S., Suy, T.B. and Haefele, S. 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy 3; 404-418. https://doi.org/10.3390/agronomy3020404.

Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D. and J.L.Julson. 2014. Effect of biochar onchemical properties of acidic soil. Archives of Agronomy and Soil Science 60(3): 393-404.

Chun, Y., Sheng, G., Chiou, C. T. and Xing, B. 2004. Compositions and sorptive properties of crop residue-derived chars. Environmental Science &Technology 38(17): 4649-4655.

DeLuca, T.H., Gundale, M.J., MacKenzie, M.D. and Jones, D.L. 2015. Biochar effects on soil nutrient transformations. Biochar For Environmental Management: Science, Technology and Implementation 2: 421-454.

Ding, Y., Liu, Y. X., Wu, W. X., Shi, D. Z., Yang, M. and Zhong, Z.K. 2010. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water, Air, & Soil Pollution 213(1-4): 47-55.

Dume, B., Tessema, D., Regassa, A. and Berecha, G. 2017. Effects of biochar on phosphorus sorption and desorption in acidic and calcareous soils. Civil and Environmental Research 9(5): 10-20.

Feng,Y., Xu, Y., Yu, Y., Xie Z and Lin, X. 2012. Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biology and Biochemistry 46: 80-88.

Foereid, B. 2015. Biochar in nutrient recycling-the effect and its use in wastewater treatment. Open Journal of Soil Science 5: 39-44.

Glaser, B., Lehmann, J. and Zech, W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biology and Fertility of Soils 35(4): 219-230.

Gul, S., Whalen, J.K., Thomas, B.W., Sachdeva, V. and Deng, H. 2015. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems and Environment 206: 46-59. https://doi.org/10.1016/j.agee.2015.03.015.

Hale, S.E., Alling, V., Martinsen, V., Mulder, J., Breedveld, G.D. and Cornelissen, G. 2013. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 91(11): 1612-1619.

Hendayana, R. 2010. Pengkajian strategi percepatan adopsi varietas padi unggul di lokasi pasang surut dan rawa untuk meningkatkan 200% adopter di Kalimantan Selatan dan Kalimantan Tengah. Laporan Hasil Penelitian Ristek. BBSDLP.

Herath, H.,Camps-Arbestain, M. and Hedley, M. 2013. Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma 209: 188-197.

Holland, J.E., Bennett, A.E., Newton, A.C., White, P.J., Mckenzie, B.M., George, T.S. and Hayes, R.C. 2018. Liming impacts on soils, crops and biodiversity in the UK: A review. Science of the Total Environment 610-611: 316-332. https://doi.org/10.1016/j.scitotenv.2017.08.020

Hossain, M.K., Strezov, V., Chan, K.Y., and Nelson, P.F. 2010. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78(9): 1167-1171. https://doi.org/10.1016/ j.chemosphere.2010.01.009.

Irianto, G. 2012. Ketersediaan prasarana dan sarana mendukung kedaulatan pangan dan energi. Makalah disampaikan pada Simposium Seminar Bersama PERAGI-PERHORTI-PERIPI-HIGI Mendukung Kedaulatan Pangan dan Energi Yang Berkelanjutan. IPB International Convention Center Bogor.

Jien, S. and Wang, C. 2013. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 110: 225-233. https://doi.org/10.1016/j.catena.2013.06.021.

Joseph,S.D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C.H., Hook, J., Van Zwieten, L., Kimber,S., Cowie, A., Singh, B.P., Lehmann, J., Foidl, N., Smernik R.J. and Amonette, J.E.2010. An investigation into the reactions of biochar in soil. Soil Research 48(7): 501-515.

Karhu, K., Mattila, T., Bergström, I. and Regina, K. 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-Results from a short-term pilot field study. Agriculture, Ecosystems & Environment 140(1-2): 309-313.

Kurniawan, T.P. 2006. Efikasi cuka kayu(wood vinegar) terhadap rayap tanah(Coptotermes curvignathus Holm) dari limbah kayu Mahoni (Swietenia macrophylla King) dan kayu Kihiyang (Albizzia procera Benth).

Laird, D., Fleming, P., Wang, B., Horton, R. and Karlen, D. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158(3-4): 436-442

Laird, D.A., Fleming, P., Davis, D.D., Horton, R., Wang, B. and Karlen, D.L. 2010. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158(3-4): 443-449.

Lee, J.W., Kidder, M., Evans, B.R., Paik, S., Buchanan Iii, A.C., Garten, C.T., and Brown, R.C. 2010. Characterization of biochars produced from cornstovers for soil amendment. Environmental Science &Technology 44(20): 7970-7974.

Lehmann, J. and Rondon, M. 2006. Bio-char soil management on highly weathered soils in the humid tropics. Biological Approaches To Sustainable Soil Systems 113(517): e530.

Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'neill, B.,Skjemstad, J.O., Thies, J., Luizão, F.J., Petersen, J. and Neves, E.G. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal 70(5): 1719-1730.

Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., Skjemstad, J. O. and Neves, E. G. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal 70: 1719-1730. https://doi.org/10.2136/sssaj2005.0383

Liu, X.H. and Zhang, X.C. 2012. Effect of biochar on pH of alkaline soils in the Loess Plateau: Results from incubation experiments. International Journal of Agriculture & Biology 14(5): 21-28.

Liu, Y., Yang, M., Wu, Y., Wang, H., Chen, Y. and Wu, W. 2011. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. Journal of Soils and Sediments 11(6): 930-939.

Luo, Y., Durenkamp, M., De Nobili, M., Lin, Q. and Brookes, P.C. 2011. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biology and Biochemistry 43(11): 2304-2314.

Mellis, E.V., Casagrande, J.C. and Soares, M.R. 2017. Nickel adsorption and desorption in an acric oxisol as a function of pH, ionic strength and incubation time. Ciencia e Agrotecnologia 41(1): 32-41.

Molindo, W.A. 2008. Determination of the nutrient status of as soil after incubation with organic residues for different days in Benin City, Nigeria. World Journmal of Agricultural Sciences 4(6): 731-736.

Mukherjee, A. and Zimmerman, A.R. 2013. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma 193: 122-130.

Nelson, N.O., Agudelo, S.C., Yuan, W. and Gan, J. 2011. Nitrogen and phosphorus availability in biochar-amended soils. Soil Science 176(5): 218-226.

Nigussie, A., Kissi, E., Misganaw, M. and Ambaw, G. 2012. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. American-Eurasian Journal of AgriculturL & Environmental Science 12(3): 369-376.

Novak, J.M., Busscher, W. J., Laird, D.L., Ahmedna, M., Watts, D.W. and Niandou, M.A. 2009. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science 174(2): 105-112.

Pal, R., Mehta, S.C. and Poonia, S.R. 1983. Predicting cation exchange equilibria in soil containing three heterovalent cations. Z. Pflanzenernaehr.Bodenk 146: 604-610.

Pari, G. 2014. Biochar technology as a go green movement in Indonesia. Journal of Wetlands Environmental Management 2(1): 84-91

Peng, X.Y. L.L., Ye, L.L., Wang, C.H., Zhou, H. and Sun, B. 2011. Temperature-and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil and Tillage Research 112(2): 159-166.

Qin,X., Li, Y., Wang, H., Liu, C., Li, J., Wan, Y., Gao, Q., Fan, F. and Liao, Y. 2016. Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: A four-year case study in south China.Science of the Total Environment 569-570: 1390-1401.

Rees, F., Simonnot, M.O. and Morel, J.L. 2014. Short?term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. European Journal of Soil Science 65(1): 149-161.

Rondon, M., Ramirez, J.A. and Lehmann, J. 2005. Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration in Agriculture and Forestry, 21-24 Maret 2005, pp. 21-24.

Rondon, M.A., Molina, D., Hurtado, M., Ramirez, J., Lehmann, J., Major, J. and Amezquita, E. 2006. Enhancing the productivity of crops and grasses while reducing greenhouse gas emissions through bio-char amendments to unfertile tropical soils. In 18th World Congress of Soil Science, pp. 9-15.

Saquet, M.A.M. 2003. Greenhouse gas flux and budget from an experimentally flooded wetland using stable isotopes and geochemistry. Univerity of Waterloo.

Schulz, H., Dunst, G. and Glaser, B. 2013. Positive effects of composted biochar on plant growth and soil fertility. Agronomy for Sustainable Development 33(4): 817-827.

Setyanto, P. dan Susilawati, H. L. 2007. Mitigasi emisi gas metan pada tanah gambut dengan varietas padi. Prosiding Seminar Pertanian Lahan Rawa "Revitalisasi kawasan PLG dan lahan rawa lainnya untuk membangun lumbung pangan nasional", pp. 293-300.

Shen, Q., Hedley, M., Camps-Arbestain, M. and Kirschbaum, M.U.F. 2016. Can biochar increase the bioavailability of phosphorus?. Journal of Soil Science and Plant Nutrition 16(2): 268-286

Singh, B.P., Hatton, B.J., Singh, B., Cowie, A.L. and Kathuria, A. 2010. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. Journal of Environmental Quality 39(4): 1224-1235.

Siregar, P., Fauzi, dan Supriadi. 2017. Pengaruh pemberian beberapa sumber bahan organik dan masa inkubasi terhadap beberapa aspek kimia kesuburan tanah ultisol. Jurnal Agroekoteknologi FP USU 5(2): 256-264.

Spokas, K.A. and Reicosky, D.C. 2009. Impacts of sixteen different biochars on soil greenhouse gas production. Annals of Environmental Science 3: 179-xx.

Spokas, K.A., Koskinen, W.C., Baker J.M. and Reicosky, D.C. 2009. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77(4): 574-581.

Steiner, C., Glaser, B., Geraldes Teixeira, W., Lehmann, J., Blum, W. E. and Zech, W. 2008. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science 171(6): 893-899.

Sujana, I. P. 2015. The effect combination of dose biochar with dose organic matters on soil characteristics and maize plants growth on land degraded by garments liquid waste. International Journal of Research in Agriculture and Forestry 2(8): 49-54.

Suriadikarta, D.A. 2005. Pengelolaan lahan sulfat masam untuk usaha pertanian. Jurnal Litbang Pertanian 24(1): 36-45

Susilawatia nd Rumanti, I. A. 2018. Potential and constraints of rice farming in tidal swamp land.Proceedings of 162nd, The IIER International Conference. Yokohama, Japan, 9 May 2018, pp. 46-50.

Van Zwieten, L., Kimber, S., Morris, S., Chan, K., Downie, A., Rust, J. and Cowie, A. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil 327: 235-246. https://doi.org/10.1007/s11104-009-0050-x

Vastola, A. 2015. The sustainability of agro-food and natural resource systems in the mediterranean basin. Springer Open. London, UK

Yamato, M., Okimori, Y., Wibowo, I. F., Anshori, S. and Ogawa, M. 2006. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Science and Plant Nutrition 52(4): 489-495.

Yao, Y., Gao, B., Zhang, M., Inyang, M. and Zimmerman, A.R. 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89(11): 1467-1471.

Yuan, J., Xu, R. and Zhang, H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology 102(3): 3488-3497.

Zhang, A., Bian, R., Pan, G. Cui, L., Hussain, Q., Li, L., Zheng, J., Zheng, J., Zhang, X., Han, X. and Yu, X. 2012. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Research 127: 153-160.

Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Zheng, J. and Crowley, D. 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems &Environment139(4): 469-475.

Zwieten,V.L., Singh, B., Joseph, S., Kimber, S., Cowie, A. and Chan, Y.K. 2009. Biochar and emissions of non-CO2 greenhouse gases from soil. In: Biochar for Environmental Management Science and Technology, J. Lehmann, S. Joseph (eds.). Earthscan Press, UK. pp. 227-249




DOI: http://dx.doi.org/10.21776/ub.jtsl.2019.006.2.6

Refbacks

  • There are currently no refbacks.