ESTIMASI CADANGAN KARBON PADA TANAH BEKAS TAMBANG EMAS DI KABUPATEN DHARMASRAYA, SUMATERA BARAT
DOI:
https://doi.org/10.21776/ub.jtsl.2023.010.2.26Keywords:
carbon stock, ex-gold mining soil, mercuryAbstract
Climate change, deforestation, and substantial loss of agricultural land within gold mining concessions in Dharmasraya greatly affect soil carbon stocks (Cs). This study used a survey method with purposive random sampling based on variations in ex-gold mining areas in each region, at depths of 0-20 and 20-40 cm with three to five replicates with a total of 54 samples. The estimation of Cs in ex-gold mining soil was highest at a depth of 20-40 cm (5.89E2), compared to a depth of 0-20 cm (1.38E2), where bulk density (BD), soil organic carbon (SOC), and total Hg in ex-gold mining soil at a depth of 0-20 and 20-40 cm were 1.46 and 1.39 g cm-3; 0.03 and 0.05%; 4.11 and 4.25 mg kg-1, respectively. The Cs in ex-gold mining soil at a depth of 0-20 cm is very significant by BD (r=-0.522** or Cs=-628.03(BD)+1055.1; R²=0.275) and SOC (r=0.948** or Cs=4896.8(SOC)-6.4673; R²=0.8996) and total Hg (r=0.518** or Cs=81.373(Hg)-196.43; R²=0.2688). However, at a depth of 20-40 cm, it was very significant by SOC (r=0.836** or Cs=16666(SOC)-196.03; R²=0.699).
Downloads
References
Alloway, B. J. 2012. Heavy Metals in Soils. In Blackie Academic and Professional, Chapman, and Hall, London (p. 368).
Amorim, H. C. S., Ashworth, A. J., Zinn, Y. L., & Sauer, T. J. 2022. Soil Organic Carbon and Nutrients Affected by Tree Species and Poultry Litter in a 17-Year Agroforestry Site. Agronomy, 12(3), 13. https://doi.org/10.3390/agronomy12030641
Aryanti, E., & Hera, N. 2019. Sifat Kimia Tanah Area Pasca Tambang Emas: (Studi Kasus Pertambangan Emas Tanpa Izin Di Kenegerian Kari Kecamatan Kuantan Tengah, Kabupaten Kuantan Singingi). Jurnal Agroteknologi, 9(2), 21. https://doi.org/10.24014/ja.v9i2.5681
Asmi Susanti, Munawar Khalil, S. 2020. Evaluasi Cadangan Karbon Tanah pada Beberapa Tipe Penggunaan Lahan Kering di Kecamatan Blang Bintang Kabupaten Aceh Besar. Jurnal Ilmiah Mahasiswa Pertanian, 5(November), 283–292.
Basir-Cyio, M., Isrun-Baso, M., Nakazawa, K., Mahfudz-Muchtar, T., Napitupulu, M., Anshary, A., Rauf, R. A., & Laude, S. 2020. The effect of traditional gold mining on land degradation, mercury contamination, and decreasing agricultural productivity. Bulgarian Journal of Agricultural Science, 26(3), 612–621.
BMKG. 2022. Data Curah Hujan Sumatera Barat. https://www.bmkg.go.id/
Chiroma T. M, Ebewele R. O.and Hymore F.K. 2014. Comparative Assessment of Heavy Metal Levels In Soil, Vegetables, And Urban Grey Waste Water Used For Irrigation In Yola And Kano. International Refereed Journal of Engineering and Science, 3(2), 1–09. www.irjes.com
Csillik, O., & Asner, G. P. 2020. Aboveground carbon emissions from gold mining in the Peruvian Amazon. Environmental Research Letters, 15(1), 12. https://doi.org/10.1088/1748-9326/ab639c
Elbasiouny, H., El-Ramady, H., Elbehiry, F., Rajput, V. D., Minkina, T., & Mandzhieva, S. 2022. Plant Nutrition under Climate Change and Soil Carbon Sequestration. Sustainability (Switzerland), 14(2), 1–20. https://doi.org/10.3390/su14020914
Esdaile, L. J., & Chalker, J. M. 2018. The Mercury Problem in Artisanal and Small-Scale Gold Mining. Chemistry - A European Journal, 24(27), 6905–6916. https://doi.org/10.1002/chem.201704840
Essandoh, P. K., Takase, M., & Bryant, I. M. 2021. Impact of Small-Scale Mining Activities on Physicochemical Properties of Soils in Dunkwa East Municipality of Ghana. Hindawi, The Scientific World Journal, 13. https://doi.org/10.1155/2021/9915117
Eviati dan Sulaeman. 2012. Petunjuk Teknis : Analisis Kimia Tanah, Tanaman, Air dan Pupuk (B. H. Prasetyo, D. Santoso, and L. R. W (eds.); 2nd ed., Vol. 148). Balai Penelitian Tanah. website:http://balittanah.litbang.deptan.go.id
Government of Indonesia. 2021. Indonesia Long-Term Strategy for Low Carbon and Climate Resilience 2050. In Minister of Environment and Forestry (p. 156). https://unfccc.int/sites/default/files/resource/Indonesia_LTS-LCCR_2021.pdf
Hairiah, K., Sonya, D., Agus, F., Velarde, S., Ekadinata, A., Rahayu, S., & van Noordwijk, M. 2011. Measuring Carbon Stocks Across Land Use Systems. www.worldagroforestrycentre.org
Horvart, M., Kotnik, J., and Estellano, V. 2019. Technical information report on Hg monitoring in soil. In UN Environment Programme (UNEP) (pp. 1–54).
IPCC. (2022). Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Cambridge University Press (p. 1454). www.ipcc.ch
Juneri, R., & Mubarak, A. 2019. Peran Pemerintah Kabupaten Dharmasraya dalam Memperbaiki Kerusakan Lahan Bekas Tambang Negeri Padang Pendahuluan Kualitas lingkungan hidup di Indonesia semakin menurun , Pencemaran dan kerusakan lingkungan hidup terjadi di setiap wilayah Indonesia Muba. Jurnal Prespektif : Jurnal Kajian Sosiologi Dan Pendidikan, 2(3), 139–146.
Kalamandeen, M., Gloor, E., Johnson, I., Agard, S., Katow, M., Vanbrooke, A., Ashley, D., Batterman, S. A., Ziv, G., Holder-Collins, K., Phillips, O. L., Brondizio, E. S., Vieira, I., & Galbraith, D. 2020. Limited biomass recovery from gold mining in Amazonian forests. Journal of Applied Ecology, 57(9), 1730–1740. https://doi.org/10.1111/1365-2664.13669
Laker, M. C. (2023). Environmental Impacts of Gold Mining — With Special Reference to South Africa. Mining, 3, 205–220.
Léa, T., Ilboudo, J., Diby, L. N., Kiba, D. I., Gunnar, T., Winowiecki, L. A., Nacro, H. B., Six, J., & Frossard, E. 2022. Relationship between the stocks of carbon in non-cultivated trees and soils in a West-African forest-savanna transition zone. EGUsphere, May, 1–25.
Lønborg, C., Carreira, C., Jickells, T., & Álvarez-Salgado, X. A. 2020. Impacts of Global Change on Ocean Dissolved Organic Carbon (DOC) Cycling. Frontiers in Marine Science, 7(June), 1–24. https://doi.org/10.3389/fmars.2020.00466
Mantey, J., Nyarko, K. B., Owusu-Nimo, F., Awua, K. A., Bempah, C. K., Amankwah, R. K., Akatu, W. E., and Appiah-Effah, E. 2020. Mercury contamination of soil and water media from different illegal artisanal small-scale gold mining operations (galamsey). Heliyon, 6(6), e04312. https://doi.org/10.1016/j.heliyon.2020.e04312
Mariati, H., Jamilah, J., & Arsita, S. 2022. Identifikasi Sifat Fisika Tanah Dan Upaya Pemulihan Tanah Pertanian Menunjang Ketahanan Pangan Di Sumbar. Jurnal Azimut, 4(1), 12-18. doi:10.1234/jaz.v4i1.788
Omotola Fashola, M., Mpode Ngole-Jeme, V., & Oluranti Babalola, O. 2020. Physicochemical properties, heavy metals, and metal-tolerant bacteria profiles of abandoned gold mine tailings in Krugersdorp, South Africa. Canadian Journal of Soil Science, 100(3), 217–233. https://doi.org/10.1139/cjss-2018-0161
Tiefenbacher, A., Sandén, T., Haslmayr, H. P., Miloczki, J., Wenzel, W., & Spiegel, H. 2021. Optimizing carbon sequestration in croplands: A synthesis. Agronomy, 11(5), 1–28. https://doi.org/10.3390/agronomy11050882
Ulrich, S., Trench, A., & Hagemann, S. 2022. Gold mining greenhouse gas emissions, abatement measures, and the impact of a carbon price. Journal of Cleaner Production, 340, 15. https://doi.org/10.1016/j.jclepro.2022.130851
Yulnafatmawita, Y 2023. Role of Rice Husk Biochar in Improving Soil Physical Properties of ex Gold Mined Soil. Journal Of Tropical Soils, 28(3).
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Jurnal Tanah dan Sumberdaya Lahan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The copyright of the received article shall be assigned to the journal as the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.