PREDIKSI KONVERSI LAHAN PERTANIAN BERBASIS ARTIFICIAL NEURAL NETWORK-CELLULAR AUTOMATA (ANN-CA) DI KAWASAN SLEMAN BARAT
DOI:
https://doi.org/10.21776/ub.jtsl.2023.010.2.30Keywords:
land use, MOLUSCE plugin, Artificial Neural Network, Cellular AutomataAbstract
Analysis and prediction of land conversion using spatial-temporal data are essential for environmental monitoring and better land use planning and management. The West Sleman area has the potential to experience land use changes due to anthropogenic factors. This study aimed to determine the spatial-temporal dynamics of land use change in 2012-2022 and predict future land use change using the ANN-CA model for 20 years (2022-2042). Analyzed the spatial-temporal dynamics of land use change based on land use data derived from SPOT imagery, then predicted future land use change with the ANN-CA model using the MOLUSCE plugin on QGIS Desktop 2.18.11. The simulation results showed an accuracy of 86.66% and an overall Kappa value of 83% obtained by comparing the actual data in 2022 with the simulated data on land use change in the same year. The irrigated paddy fields decreased by 6.39% (685.22 ha) due to conversion to settlements. The area of residential buildings increased by 4.65% (498.49 ha) during 2012- 2017. Predictions of land use change in 2022-2042 show that the reduction of irrigated paddy fields will continue, and the number of residential buildings tend to increase.
Downloads
References
Abbas, Z.; Yang, G.; Zhong, Y.; Zhao, Y. 2021. Spatiotemporal Change Analysis and Future Scenario of LULC Using the CA-ANN Approach: A Case Study of the Greater Bay Area, China. Land 2021, 10, 584. https://doi.org/10.3390/land10060584
Aniah, P., Bawakyillenuo, S., Codjoec, S.N.A., Dzanku, F.M. 2023. Land use and land cover change detection and prediction based on the CA-Markov chain in the savannah ecological zone of Ghana. Environmental Challenges 10, 100664. https://www.sciencedirect.com/science/article/pii/S2667010022002207
Belihu, M.; Tekleab, S.; Abate, B.; Bewket, W. 2020. Hydrologic response to land use land cover change in the Upper Gidabo Watershed, Rift Valley Lakes Basin, Ethiopia. HydroResearch 2020, 3, 85–94. https://www.sciencedirect.com/science/article/pii/S2589757820300147
El-Tantawi, A.M.; Bao, A.; Chang, C.; Liu, Y. 2019. Monitoring and predicting land use/cover changes in the Aksu-Tarim River Basin, Xinjiang-China (1990–2030). Environ. Monit. Assess. 2019, 191, 1–18. https://link.springer.com/article/10.1007/s10661-019-7478-0
Gasarovic, M.; Jogun, T. 2018. The effect of fusing Sentinel-2 bands on land-cover classification. Int. J. Remote Sens. 2018, 39, 822–841. https://doi.org/10.1080/01431161.2017.1392640
Getachew, B.; Manjunatha, B.; Bhat, H.G. 2021. Modeling projected impacts of climate and land use/land cover changes on hydrological responses in the Lake Tana Basin, upper Blue Nile River Basin, Ethiopia. Journal of Hydrology 2021, 595, 125974. https://www.sciencedirect.com/science/article/abs/pii/S0022169421000214?via%3Dihub
Hapsary, M.S.A., Subiyanto, S., Firdaus, H.S. 2021. Analisis Prediksi Perubahan Penggunaan Lahan dengan Pendekatan Artificial Neural Network dan Regresi Logistik di Kota Balikpapan. Jurnal Geodesi Undip 10 (2). https://ejournal3.undip.ac.id/index.php/geodesi/article/view/30637
Khan, Z., Saeed, A., Bazai, M.H. 2020. Land use / land cover change detection and prediction using the CA-Markov model: A case study of Quetta city, Pakistan. Journal of Geography and Social Science 2020, 2, 164–182. http://jgssjournal.uob.edu.pk/journal/index.php/jgss/article/view/17
Kunz, A. 2017. Miscalssification and kappa-statistic: Theoretical relationship and consequences in application.
Li, S., Nadolnyak, D., Hartarska, V. 2019. Agricultural land conversion: Impacts of economic and natural risk factors in coastal areas. Land Use Policy Volume 80 Pages 380-390. https://www.sciencedirect.com/science/article/pii/S0264837718306069
Lukas, P., Melesse, A.M., Kenea, T.T. 2023. Prediction of Future Land Use/ Land Cover Changes Using a Coupled CA-ANN Model in the Upper Omo-Gibe River Basin, Ethiopia. Remote Sensing 2023, 15 (4), 1148. https://www.mdpi.com/2072-4292/15/4/1148
Martanto, R., & Andriani, V. 2019. Arahan Penggunaan Lahan di Kabupaten Sleman Indonesia. Prosiding Seminar FIT ISI 2020 Teknik Geodesi Universitas Diponegoro. https://proceedings.undip.ac.id/index.php/isiundip2021/article/view/643/388 187-193
Nabila, Diffa Alifia. 2023. Pemodelan Prediksi dan Kesesuaian Perubahan Penggunaan Lahan menggunakan Cellular Automata-Artificial Neural Network. Jurnal Tunas Agraria, 6 (1), 41-55, Januari 2023. https://jurnaltunasagraria.stpn.ac.id/index.php/JTA/article/view/203/183
Pijanowski, B.C.; Brown, D.; A Shellito, B.; A Manik, G. 2002. Using neural networks and GIS to forecast land use changes: A Land Transformation Model. Comput. Environ. Urban Syst. 2002, 26, 553–575. https://www.sciencedirect.com/science/article/abs/pii/S0198971501000151
Rahman, M., Tabassum, F., Rasheduzzaman, M. et al. 2017. Temporal dynamics of land use/land cover change and its prediction using CA-ANN model for southwestern coastal Bangladesh. Environ Monit Assess 189, 565 (2017). https://doi.org/10.1007/s10661-017-6272-0
Rasool, R., Fayaz, A., ul Shafiq, M., Singh, H., Ahmed, P. 2021. Land use land cover change in Kashmir Himalaya: Linking remote sensing with an indicator based DPSIR approach. Ecol. Indic. 125, 107447. https://www.sciencedirect.com/science/article/pii/S1470160X21001126
Surya, B., Ahmad, D.N.A., Sakti, H.H., Sahban, H. 2020. Land Use Change, Spatial Interaction, and Sustainable Development in the Metropolitan Urban Areas, South Sulawesi Province, Indonesia. Land 2020, 9(3), 95; https://doi.org/10.3390/land9030095. https://www.mdpi.com/2073-445X/9/3/95
Valent, C. G., Subiyanto, S., & Wahyuddin, Y. 2021. Analisis Pola dan Arah Perkembangan Permukiman di Wilayah Aglomerasi Perkotaan Yogyakarta (APY) (Studi Kasus: Kabupaten Sleman). Jurnal Geodesi UNDIP, 10(2), 78-87. https://ejournal3.undip.ac.id/index.php/geodesi/article/view/30636
Yang, R., Chen, H., Chen, S., Ye, Y.M. 2022. Spatiotemporal evolution and prediction of land use/land cover changes and ecosystem service variation in the Yellow River Basin, China. Ecol. Indic. 145, 109579. https://www.sciencedirect.com/science/article/pii/S1470160X22010524
Welde, K.; Gebremariam, B. 2017. Effect of land use land cover dynamics on hydrological response of watershed: Case study of Tekeze Dam watershed, northern Ethiopia. International Soil Water Conservation Research. 2017, 5, 1–16. https://www.sciencedirect.com/science/article/pii/S2095633916301538
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Jurnal Tanah dan Sumberdaya Lahan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The copyright of the received article shall be assigned to the journal as the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.