• Muhammad Fauzan Ramadhan Program Magister Geografi, Fakultas Geografi, Universitas Gadjah Mada
  • Guruh Samodra Departemen Geografi Lingkungan, Fakultas Geografi, Universitas Gadjah Mada
  • Muhammad Rizky Shidiq Nugraha Program Studi Geografi Lingkungan, Fakultas Geografi, Universitas Gadjah Mada
  • Djati Mardiatno Departemen Geografi Lingkungan, Fakultas Geografi, Universitas Gadjah Mada



digital soil mapping, multiple linear regression, regression Kriging, soil thickness


Soil thickness has a significant influence on many of earth surface processes, and it can be mapped using various methods. Digital soil mapping can be used to estimate the spatial distribution of soil thickness and can estimate the uncertainty of the soil prediction map. Digital soil mapping using regression methods such as Multiple Linear Regression (MLR) and Regression Krigging (RK) was used to estimate soil thickness of the slope of Bener Reservoir. Bener Dam is a national strategic project which is built for irrigation to improve farming quantity. The aim of this research was to determine the spatial variation of the soil thickness at the slope of Bener Reservoir. The accuracy of MLR and RK were compared to select the best soil thickness prediction. There were 212 and 53 soil thickness samples from fieldwork which were used for data training and testing, respectively. There were 5 environmental variables such as elevation, distance from river, slope, plan curvature, and topographic wetness index. R programming language with gstat, krige, and stats Packages was employed for MLR and RK prediction. The result showed that KR is more accurate than MLR.


Bostan, P.A., Heuvelink, G.B.M., and Akyurek, S.Z. 2012. Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey. International Journal of Applied Earth Observations and Geoinformation 19:115-126, doi:10.1016/j.jag.2012.04.010.

Chen, S., Mulder, V.L., Martin, M.P., Walter, C., Lacoste, M., Richer-de-Forges, A.C., Saby, N.P.A., Loiseau, T., Hu, B. and Arrouays, D. 2019. Probability mapping of soil thickness by random survival forest at a national scale. Geoderma 344(July 2018):184-194, doi:10.1016/j.geoderma.2019.03.016.

Dharumarajan, S., Lalitha, M., Niranjana, K.V. and Hegde, R. 2022. Evaluation of digital soil mapping approach for predicting soil fertility parameters - a case study from Karnataka Plateau , India. Arabian Journal of Geosciences, doi:10.1007/s12517-022-09629-8.

Han, X., Liu, J., Mitra, S., Li, X., Srivastava, P., Guzman, S.M. and Chen, X. 2018. Selection of optimal scales for soil depth prediction on headwater hillslopes: A modeling approach. Catena 163(December 2017):257-275, doi:10.1016/j.catena.2017.12.026

Hengl, T. and MacMillan, R.A. 2019. Predictive Soil Mapping with R. OpenGeoHub Foundation.

Hengl, T., Heuvelink, G.B.M. and Rossiter, D.G. 2007. About regression-kriging : From equations to case studies. Computers and Geosciences 33:1301-1315, doi:10.1016/j.cageo.2007.05.001.

Ho, J. Y., Lee, K.T., Chang, T.C., Wang, Z.Y. and Liao, Y.H. 201). Influences of spatial distribution of soil thickness on shallow landslide prediction. Engineering Geology 124(1):38-46, doi:10.1016/j.enggeo.2011.09.013.

Horst-Heinen, T.Z., Dalmolin, R.S.D., ten Caten, A., Moura-Bueno, J.M., Grunwald, S., Pedron, F. de A., Rodrigues, M.F., Rosin, N.A. and da Silva-Sangoi, D.V. 2021. Soil depth prediction by digital soil mapping and its impact in pine forestry productivity in South Brazil. Forest Ecology and Management 488(January), doi:10.1016/j.foreco.2021.118983.

James, G., Witten, D., Tibshirani, R. and Hastie, T. 2013. An Introduction to Statistical Learning with Applications. Springer.

John, K., Bouslihim, Y., Ikpi, K., Hssaini, L., Razouk, R., Bassey, P., Abraham, I., Chapman, P., Michael, N. and Qin, C. 2022. Do model choice and sample ratios separately or simultaneously in fl uence soil organic matter prediction ? International Soil and Water Conservation Research 10(3):470-486, doi:10.1016/j.iswcr.2021.11.003.

Khaledian, Y. and Miller, B.A. 2020. Selecting appropriate machine learning methods for digital soil mapping. Applied Mathematical Modelling 81:401-418, doi:10.1016/j.apm.2019.12.016.

Kim, M.S., Onda, Y., Uchida, T. and Kim, J.K. 2016. Effects of soil depth and subsurface flow along the subsurface topography on shallow landslide predictions at the site of a small granitic hillslope. Geomorphology 271:40-54, doi:10.1016/j.geomorph.2016.07.031.

Lamichhane, S., Kumar, L. and Wilson, B. 2019. Geoderma Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications : A review. Geoderma 352(June):395-413, doi:10.1016/j.geoderma.2019.05.031.

Liu, Y., Guo, L., Jiang, Q., Zhang, H. and Chen, Y. 2015. Comparing geospatial techniques to predict SOC stocks. Soil and Tillage Research 148:46-58, doi:10.1016/j.still.2014.12.002.

Lu, Y.Y., Liu, F., Zhao, Y.G, Song, X.D. and Zhang, G.L. 2019. An integrated method of selecting environmental covariates for predictive soil depth mapping. Journal of Integrative Agriculture 18(2):301-315, doi:10.1016/S2095-3119(18)61936-7.

Malone, B., Minasny, B. and Mcbratney, A.B. 2017. Progress in Soil Science : Using R for Digital Soil Mapping.

Malone, B., Stockmann, U., Glover, M., Mclachlan, G., Engelhardt, S. and Tuomi, S. 2022. Digital soil survey and mapping underpinning inherent and dynamic soil attribute condition assessments. Soil Security 6(January):100048, doi:10.1016/j.soisec.2022.100048.

Mehnatkesh, A., Ayoubi, S., Jalalian, A. and Kanwar, L. 2013. Relationships between soil depth and terrain attributes in a semi arid hilly region in Western Iran. Journal of Mountain Science 163-172, doi:10.1007/s11629-013-2427-9.

Pham, T.G., Kappas, M., Huynh, C.Van., Hoang, L. and Nguyen, K. 2019. Application of ordinary Kriging and regression Kriging method for soil properties mapping in hilly region of Central Vietnam. International Journal of Geo-Information, doi:10.3390/ijgi8030147.

Rahardjo, W., Sukandarrumidi, and Rosidi, H.M. 1995. Peta Geologi Lembar Yogyakarta. Pusat Penelitian dan Pengembangan Geologi.

Sasangka, D.I.D. dan Indrawan, I. 2018. Karakterisasi kondisi geologi teknik terhadap stabilitas konstruksi Bendungan Bener Kabupaten Purworejo. Seminar Pembangunan dan Pengelolaan Bendungan, December.

Searle, R., Mcbratney, A., Grundy, M., Kidd, D., Malone, B., Arrouays, D., Stockman, U., Zund, P., Wilson, P., Wilford, J., Gool, D. Van, Trianta, J., Thomas, M., Stower, L., Slater, B., Robinson, N., Ringrose-voase, A., Padarian, J., Payne, J., … Andrews, K. 2021. Digital soil mapping and assessment for Australia and beyond : A propitious future. Geoderma Regional 24, doi:10.1016/j.geodrs.2021.e00359.

USDA. 201). Soil Survey Manual (Issue 18). U.S. Department of Agriculture.

Yang, S., Liu, F., Song, X., Lu, Y., Li, D. and Zhao, Y. 2019. Mapping topsoil electrical conductivity by a mixed geographically weighted regression kriging : A case study in the Heihe River Basin, northwest China. Ecological Indicators 102(February):252-264, doi:10.1016/j.ecolind.2019.02.038.




How to Cite

Ramadhan, M. F., Samodra, G., Nugraha, M. R. S., & Mardiatno, D. (2023). PERBANDINGAN METODE MULTIPLE LINEAR REGRESSION (MLR) DAN REGRESSION KRIGING (RK) DALAM PEMETAAN KETEBALAN TANAH DIGITAL. Jurnal Tanah Dan Sumberdaya Lahan, 10(1), 65–74.