PEMETAAN BAHAN ORGANIK TANAH PADA SAWAH IRIGASI DAN TADAH HUJAN DI KECAMATAN TUREN, MALANG

Christanti Agustina, Mochtar Lutfi Rayes, Novalia Kusumarini, Khanza Amaladewi Sudharta

Abstract


Each land use has a different vegetation density and the litter input as a source of soil organic matter. Vegetation density index can be analyzed based on the NDVI equation using the GIS approach. This study aims to determine the effect of different land uses and NDVI on soil organic matter content and the mapping of soil organic matter content. This research was conducted from April  to August 2019 in Turen District, Malang Regency. The survey method used for collecting data in the field (36 observation points) based on differences in landform, relief, slope, land use (irrigated and rainfed rice fields), and vegetation density index classes (low, medium, high). Soil samples were taken at 0-20 cm depth and analyzed for soil organic matter content. Data interpolation using IDW was used for mapping soil organic matter. The results showed that there was a very significant effect between differences in land use and NDVI class on the content of soil organic matter (p <0.001). NDVI value gives an effect of 81.5% on soil organic matter content. The distribution of soil organic matter content is classified into 5 classes, which are very low, low, moderate, high and very high.


Keywords


geographic information system; landsat OLI/TIRS; NDVI; remote sensing; soil organic matter

Full Text:

PDF

References


Arrouays, D., Deslais, W. and Badeau, V. 2001. The carbon content of topsoil and its geographical distribution in France. Soil Use and Management 17: 7-11.

Badan Pusat Statistik Kabupaten Malang. 2017. Kecamatan Turen dalam Angka 2017. (W. Furgandari & R.K. Wardhani, Eds.). Malang: BPS Kabupaten Malang.

Bhunia, G.S., Shit, P.K. and Edalat, M. 2019a. Prediction of Soil Organic Carbon and its Mapping Using Regression Analyses and Remote Sensing Data in GIS and R. Spatial Modeling in GIS and R for Earth and Environmental Sciences, 429-450.

Bhunia, G.S., Shit, P.K. and Pourghasemi, H. R. 2019b. Soil organic carbon mapping using remote sensing techniques and multivariate regression model. Geocarto International 34(2): 215-226.

Luo, Z., Yaolin, L., Jian, W. and Jing, W. 2008. Quantitative Mapping of Soil Organic Material Using Field Spectrometer and Hyperspectral Remote Sensing. In C. Jun, J. Jie, & A. PELED (Eds.), The International Archives Of The Photogrammetry, Remote Sensing and Spatial Information Sciences. Beijing: 3-11 Juli 2008. pp. 901-906.

Nita, C.E., Siswanto, B. dan Utomo, W.H. 2015. Pengaruh pengolahan tanah dan pemberian bahan organik (blotong dan abu ketel) terhadap porositas tanah dan pertumbuhan tanaman tebu pada Ultisol. Jurnal Tanah dan Sumberdaya Lahan 2(1): 119-127.

Ritung, S., Nugroho, K., Mulyani, A. dan Suryani, E. 2011. Petunjuk Teknis Evaluasi Lahan untuk Komoditas Pertanian (Revisi). Bogor: Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian.

Rouse, J.W. Jr., Haas, R.H., Deering, D.W., Schell, J.A. and Harlan, J.C.1974. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation, NASA/GSFC Type III Final Report, Greenbelt, MD., 371p.

Tangketasik, A., Wikarniti, N.M., Soniari, N.N. dan Narka, I.W. 2012. Kadar bahan organik tanah pada tanah sawah dan tegalan di Bali serta hubungannya dengan tekstur tanah. Agrotrop 2(2): 101-107.

Walkley, A. and Black, I.A. 1934. An examination of the Degtjaref method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38.

Yang, L., Song, M., Zhu, A-X., Qin, C., Zhou, C., Qi, F., Li, X., Chen, Z. and Gao, B. 2019. Predicting soil organic carbon content in croplands using crop rotation and Fourier transform decomposed variables. Geoderma 340: 289-302.

Yuniwati, E.D. 2017. Manajemen Tanah: Teknik Perbaikan Kualitas Tanah. Malang, Indonesia: Intimedia.




DOI: http://dx.doi.org/10.21776/ub.jtsl.2020.007.1.9

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Christanti Agustina MP, Mochtar Lutfi Rayes, Novalia Kusumarini, Khanza Amaladewi Sudharta

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.