ANALISIS SPATIO-TEMPORAL PERUBAHAN TUTUPAN LAHAN DAN KAITANNYA DENGAN TEMPERATUR PERMUKAAN LAHAN DI DESA CIPUTRI PERIODE 2005-2035

Authors

DOI:

https://doi.org/10.21776/ub.jtsl.2025.012.2.16

Keywords:

CA-ANN, LST, LULC, prediction, remote sensing

Abstract

Land Use and Land Cover (LULC) change are major factors affecting Land Surface Temperature (LST), especially in areas experiencing urbanisation and climate change pressures. Ciputri Village, which is predominantly agricultural, has experienced significant changes in land cover patterns over the past two decades, with the potential for increased surface temperature due to land use change. This study analyses and predicts the dynamics of land use and cover changes and their relationship with land surface temperature in the period 2005-2035 using a combination of remote sensing data and Cellular Automata-Artificial Neural Network (CA-ANN) models. The analysis showed that between 2005 and 2020, the area of dense vegetation decreased by 20.49%, while built-up land increased by 43.75%. In line with these changes, surface temperature increased by 1.96°C on average. Predictions to 2035 show a similar trend, with built-up land projected to increase by 20.11%, while average surface temperature is expected to increase by 2.71°C compared to 2005. The correlation between land cover change and surface temperature variation suggests that conversion of dense vegetation to mixed land and built-up land is a major factor driving temperature increases. These findings emphasise the urgency of spatially-based climate change mitigation, including vegetation conservation and sustainable development planning to reduce the impact of future temperature increases.

Downloads

Download data is not yet available.

Author Biographies

  • I Kadek Yoga Dwi Putra, Departemen Geografi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Indonesia

    I Kadek Yoga Dwi Putra is currently pursuing a Master’s degree in Geography at the Faculty of Mathematics and Natural Sciences, Universitas Indonesia. He holds a Bachelor’s degree in Meteorology from the Faculty of Earth Sciences and Technology, Institut Teknologi Bandung. He works as a Scientific Data Analyst at the National Research and Innovation Agency (BRIN). His research interests include land use and land cover change (LUCC), land suitability evaluation, land surface temperature, remote sensing, meteorology, and urban heat islands. He can be reached via email at [email protected] or by phone at +62 857 3955 9039.

  • Masita Dwi Mandini Manessa, Departemen Geografi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Indonesia

    Dr. Masita Dwi Mandini Manessa is a Senior Lecturer in the Department of Geography at the University of Indonesia, Depok, Indonesia. She specializes in remote sensing and geospatial analysis, with a particular focus on land cover change and environmental monitoring. Her expertise in satellite-based observation methods and spatial modeling aligns with the objectives of this study which examines land cover dynamics and their relationship with surface temperature. Dr. Manessa's extensive research background enhances the analytical framework of this study, particularly in integrating remote sensing techniques for spatio-temporal analysis. Dr. Manessa has an h-index of 6 in Scopus and 12 in Google Scholar, reflecting her significant contributions to her field.

  • Adi Wibowo, Departemen Geografi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Indonesia

    Adi Wibowo, S.Si., M.Si., Ph.D., is a Lecturer in the Department of Geography, Faculty of Mathematics and Natural Sciences, Universitas Indonesia. He earned his Ph.D. in Geography from the University of Malaya. His research focuses on Geographic Information Systems (GIS), particularly in change detection related to human activities and infrastructure development. Dr. Wibowo has an h-index of 8 in Scopus and 14 in Google Scholar, reflecting his significant contributions to his field.

References

Altieri, M. A., Nicholls, C. I., Henao, A., & Lana, M. A. (2015). Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development, 35(3), 869–890. https://doi.org/10.1007/s13593-015-0285-2.

Andryandy, T. (2015). Hama Ulat Serang Perkebunan Teh. Pikiran Rakyat. https://www.pikiran-rakyat.com/jawa-barat/pr-01232483/hama-ulat-serang-perkebunan-teh?page=all.

Artis, D.A. and Carnahan, W.H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, 12(4), pp. 313–329. https://doi:10.1016/0034-4257(82)90043-8.

Atıl, H., & Akıllı, A. (2016). Comparison of artificial neural network and K-means for clustering dairy cattle. International Journal of Sustainable Agricultural Management and Informatics, 2(1), 40. https://doi.org/10.1504/ijsami.2016.077266.

Balai Besar TNGGP. (2018). Green Wall Balai Besar TN Gunung Gede Pangrango. Kementerian Lingkungan Hidup dan Kehutanan Republik Indonesia. Diakses dari https://ksdae.menlhk.go.id/info/2856/green-wall-balai-besar-tn-gunung-gede-pangrango.html.

Blissag, B., Yebdri, D., & Kessar, C. (2023). Spatiotemporal change analysis of LULC using remote sensing and CA-ANN approach in the Hodna basin, NE of Algeria. Physics and Chemistry of the Earth Parts a/B/C, 133, 103535. https://doi.org/10.1016/j.pce.2023.103535

Debnath, M., Islam, N., Gayen, S. K., Roy, P. B., Sarkar, B., & Ray, S. (2023). Prediction of spatio-temporal (2030 and 2050) land-use and land-cover changes in Koch Bihar urban agglomeration (West Bengal), India, using artificial neural network-based Markov chain model. Modeling Earth Systems and Environment, 9(3), 3621–3642. https://doi.org/10.1007/s40808-023-01713-6.

Ding, W., Wang, R., Wu, D., & Liu, J. (2012). Cellular automata model as an intuitive approach to simulate complex land-use changes: an evaluation of two multi-state land-use models in the Yellow River Delta. Stochastic Environmental Research and Risk Assessment, 27(4), 899–907. https://doi.org/10.1007/s00477-012-0624-7.

Harvey, J. A., Tougeron, K., Gols, R., Heinen, R., Abarca, M., Abram, P. K., Basset, Y., Berg, M., Boggs, C., Brodeur, J., Cardoso, P., De Boer, J. G., De Snoo, G. R., Deacon, C., Dell, J. E., Desneux, N., Dillon, M. E., Duffy, G. A., Dyer, L. A., . . . Chown, S. L. (2022). Scientists’ warning on climate change and insects. Ecological Monographs, 93(1). https://doi.org/10.1002/ecm.1553

Herdiana, D. (2015). Ulat Jengkal Serang Tanaman Teh di Sarongge. Tribun Jabar. https://jabar.tribunnews.com/2015/09/03/ulat-jengkal-serang-tanaman-teh-di-sarongge#google_vignette.

Huber, J., Imperiali, L., Menzi, D., Musil, F., & Kolar, J. W. (2024). Energy Efficiency is Not Enough! IEEE Power Electronics Magazine, 11(1), 18–31. https://doi.org/10.1109/mpel.2024.3354013

Husain, M. A., Kumar, P., & Gonencgil, B. (2023). Assessment of Spatio-Temporal Land Use/Cover Change and its effect on land surface temperature in Lahaul and Spiti, India. Land, 12(7), 1294. https://doi.org/10.3390/land12071294.

Imran, H. M., Hossain, A., Shammas, M. I., Das, M. K., Islam, M. R., Rahman, K., & Almazroui, M. (2022). Land surface temperature and human thermal comfort responses to land use dynamics in Chittagong city of Bangladesh. Geomatics Natural Hazards and Risk, 13(1), 2283–2312. https://doi.org/10.1080/19475705.2022.2114384

Kenny, G. P., Flouris, A. D., Yagouti, A., & Notley, S. R. (2018). Towards establishing evidence-based guidelines on maximum indoor temperatures during hot weather in temperate continental climates. Temperature, 6(1), 11–36. https://doi.org/10.1080/23328940.2018.1456257

Li, Z., et al. (2019). "Satellite-derived land surface temperature: Current status and perspectives." Remote Sensing of Environment, 231, 111208.

Mallick, J., Singh, V. P., Almesfer, M. K., Talukdar, S., Alsubhi, M., Ahmed, M., & Khan, R. A. (2021). Spatio-temporal analysis and simulation of land cover changes and their impacts on land surface temperature in urban agglomeration of Bisha Watershed, Saudi Arabia. Geocarto International, 37(25), 7591–7617. https://doi.org/10.1080/10106049.2021.1980616.

Mandal, A., Stephenson, T., Campbell, J., Taylor, M., Watson, S., Clarke, L., Smith, D., Darsan, J., & Wilson, M. (2022). An assessment of the impact of 1.5 versus 2 and 2.5°C global temperature increase on flooding in Jamaica: a case study from the Hope watershed. Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 380(2221). https://doi.org/10.1098/rsta.2021.0141

New, M., Liverman, D., Schroder, H., & Anderson, K. (2010). Four degrees and beyond: the potential for a global temperature increase of four degrees and its implications. Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 369(1934), 6–19. https://doi.org/10.1098/rsta.2010.0303

Noi, P. T., & Kappas, M. (2017). Comparison of random Forest, K-Nearest Neighbor, and Support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors, 18(1), 18. https://doi.org/10.3390/s18010018.

Nugraha, A. T., Waterson, B. J., Blainey, S. P., & Nash, F. J. (2020). On the consistency of urban cellular automata models based on hexagonal and square cells. Environment and Planning B Urban Analytics and City Science, 48(4), 845–860. https://doi.org/10.1177/2399808319898501.

Patel, S., Indraganti, M., & Jawarneh, R. N. (2024). Land surface temperature responses to land use dynamics in urban areas of Doha, Qatar. Sustainable Cities and Society, 104, 105273. https://doi.org/10.1016/j.scs.2024.105273

Peng, S., et al. (2020). "Spatial and temporal patterns of land surface temperature across urban clusters in China based on a remote sensing data fusion approach." Remote Sensing, 12(3), 445.

Phonphan, W., Arunplod, C., Wongsongja, N., Utarasakul, T., Niemmanee, T., Kayee, P., Daraneesrisuk, J., Thongdara, R. (2024). Evaluating Spatiotemporal Dynamics: A Comparative study of predictive efficacy in land use Land Cover Change Models-Markov Chain, CA-ANN, and PLUS. International Journal of Geoinformatics. https://doi.org/10.52939/ijg.v20i6.3329.

Phuong, T. T., Hung, T. L., Giang, L. T., Bien, T. X., & Van Phu, L. (2024). Assessment of land cover changes using sentinel-2 satellite image data: A case study of Thanh Hoa coastal area, Viet Nam. IOP Conference Series Earth and Environmental Science, 1345(1), 012026. https://doi.org/10.1088/1755-1315/1345/1/012026.

Ping, 任. R., Buting, 洪. H., Yin, 刘. L., & Jieming, 周. Z. (2014). A study of spatial evolution characteristics of rural settlements and influences of landscape patterns on their distribution using GIS and RS. Acta Ecologica Sinica, 34(12). https://doi.org/10.5846/stxb201307291976.

Rigden, A. J., & Li, D. (2017). Attribution of surface temperature anomalies induced by land use and land cover changes. Geophysical Research Letters, 44(13), 6814–6822. https://doi.org/10.1002/2017gl073811.

Shao, Y., & Lunetta, R. S. (2012). Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 78–87. https://doi.org/10.1016/j.isprsjprs.2012.04.001.

Sharma, N., & Chawla, S. (2023). Digital Change Detection Analysis Criteria and Techniques used for Land Use and Land Cover Classification in Agriculture. 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 331–335. https://doi.org/10.1109/icacite57410.2023.10182604.

Song, Y., Hongtao, X., Wang, H., Zhu, Z., Kang, X., Cao, X., Bin, Z., & Zeng, H. (2024). An adaptive transition probability matrix with quality seeds for cellular automata models. GIScience & Remote Sensing, 61(1). https://doi.org/10.1080/15481603.2024.2347719.

Tewabe, D., & Fentahun, T. (2020). Assessing land use and land cover change detection using remote sensing in the Lake Tana Basin, Northwest Ethiopia. Sustainable Environment, 6(1). https://doi.org/10.1080/23311843.2020.1778998.

Waleed, M., & Sajjad, M. (2021). Leveraging cloud-based computing and spatial modeling approaches for land surface temperature disparities in response to land cover change: Evidence from Pakistan. Remote Sensing Applications Society and Environment, 25, 100665. https://doi.org/10.1016/j.rsase.2021.100665.

Wang, J., Bretz, M., Dewan, M. a. A., & Delavar, M. A. (2022). Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. The Science of the Total Environment, 822, 153559. https://doi.org/10.1016/j.scitotenv.2022.153559.

Wang, L., Duan, S., Zhang, X., Chang, S., Liu, X., Huang, C., & Qian, Y. (2021). The influence of afforestation on land surface temperature in China. National Remote Sensing Bulletin, 25(8), 1862–1872. https://doi.org/10.11834/jrs.20211284.

Wang, X., et al. (2023). "Climate change, land surface temperature, and their impacts on agriculture: A review." Agricultural and Forest Meteorology, 311, 108210.

Yang, X., et al. (2022). "Urban heat islands and their impact on human health in large Chinese cities." Science of the Total Environment, 749, 141471.

Zhang, F., Han, Z., Ge, H., & Zhu, Y. (2015). Optimization design of traffic flow under security based on cellular automata model. Computer Science and Information Systems, 12(2), 427–443. https://doi.org/10.2298/csis141228008z.

Zhang, R., & Liu, Y. (2018). Research on development and application of Support Vector Machine - Transformer Fault Diagnosis (pp. 262–268). ACM International Conference Proceeding Series. https://doi.org/10.1145/3305275.3305328.

Zhao, C., et al. (2021). "Monitoring and analyzing land surface temperature variations in response to urbanization in China." Environmental Research Letters, 16(5), 054039

Downloads

Published

01-07-2025

Issue

Section

Articles

Categories

How to Cite

Putra, I. K. Y. D., Manessa, M. D. M. ., & Wibowo, A. (2025). ANALISIS SPATIO-TEMPORAL PERUBAHAN TUTUPAN LAHAN DAN KAITANNYA DENGAN TEMPERATUR PERMUKAAN LAHAN DI DESA CIPUTRI PERIODE 2005-2035. Jurnal Tanah Dan Sumberdaya Lahan, 12(2), 379-393. https://doi.org/10.21776/ub.jtsl.2025.012.2.16

Similar Articles

1-10 of 203

You may also start an advanced similarity search for this article.