TEKSTUR DAN BAHAN ORGANIK TANAH SERTA HUBUNGANNYA DENGAN BATAS ATTERBERG DAN AKTIVITAS LIAT

Authors

  • Nazilia Indana Zulfa Program Studi Ilmu Tanah, Fakultas Pertanian, Universitas Jember
  • Cahyoadi Bowo Program Studi Ilmu Tanah, Fakultas Pertanian, Universitas Jember

DOI:

https://doi.org/10.21776/ub.jtsl.2023.010.2.16

Keywords:

primary mineral, clay activity, c-organic, kaolinite, plasticity index

Abstract

Clay minerals are an important indicator of soil plasticity, influencing clay activity. This study aimed to elucidate the effect of clay minerals, organic C and primary minerals on the Atterberg limit and clay activity. The study was conducted in the Kemuning sub-watershed, Jember, East Java. The study began by preparing a thematic map to determine sample points with stratified random sampling. They were taken as many as 35 disturbed soil sample points at 0-20 cm from the surface. Soil texture was determined using the pipette method, and organic C was determined by the spectrophotometer method. The liquid limit and plastic limit were used to determine the plasticity index. A microscopic analysis of sand mineralogy was carried out to compare activity values with a magnification of 20-40 times to assess the primary soil minerals. The results showed that clay and C-organic affect fluidity, plastic limit, and plasticity index. The presence of andesine, albite, olivine, and orthoclase in the sand fraction and the low clay activity indicated that kaolinite dominated the study area, with smaller amounts of illite and halloysite.

Downloads

Download data is not yet available.

References

Blanco-Canqui, H. 2017. Biochar and soil physical properties. Soil Science Society of America Journal 81(4):687-711, doi:10.2136/sssaj2017.01.0017.

Blanco-Canqui, H., Lal, R., Post, W.M., Izaurralde, R.C. and Shipitalo, M.J. 2006. Organic carbon influences on soil particle density and rheological properties. Soil Science Society of America Journal 70(4):1407-1414, doi:10.2136/sssaj2005.0355.

Bowo, C. and Zahni, N.A. 2023. The soil liming in a sub-watershed by using exchangeable aluminium and effective cation exchange capacity methods. AIP Conference Proceedings 2583:020031, January, 1-7, doi:10.1063/5.0116213.

Candra, I.N., Gerzabek, M.H., Ottner, F., Wriessnig, K., Tintner, J., Schmidt, G., Rechberger, M.v., Rampazzo, N. and Zehetner, F. 2021. Soil development and mineral transformations along a one-million-year chronosequence on the Galápagos Islands. Soil Science Society of America Journal 85(6):2077-2099, doi:10.1002/saj2.20317.

Coblinski, J.A., Elvibo, G., Jose, A.M.D., Andre, C.D., Jose, J.F.C. and Radi, M.V. 2020. Prediction of soil texture classes through different wavelenght regions of reflectance spectroscopy at various soil depths. Catena 189:104485.

Dere, A.L., White, T.S., April, R.H. and Brantley, S.L. 2016. Mineralogical transformations and soil development in shale across a latitudinal climosequence. Soil Science Society of America Journal 80(3):623-636, doi:10.2136/ sssaj2015.05.0202.

Dolinar, B. and Škrabl, S. 2013. Atterberg limits in relation to other properties of fine-grained soils. Acta Geotechnica Slovenica 10(2):5-13.

Elias, E. 2017. Characteristics of Nitisol profiles as affected by land use type and slope class in some Ethiopian highlands. Environmental Systems Research 6(1), doi:10.1186/s40068-017-0097-2.

Fahriana, N., Yulina, I., Ellida, N.Y. dan Hendra, A. 2019. Analisis klasifikasi tanah dengan metode USCS (Meurandeh Kota Langsa). Jurutera 6(2):005-013.

Gui, Y., Zhang, Q., Qin, X. dan Wang, J. 2021. Influence of organic matter content on engineering properties of clays. Advances in Civil Engineering 2021, doi:10.1155/2021/6654121.

Hakim, M.A., Nana, K.T.M. dan Isadi, A. 2016. Estimasi stok karbon mangrove di Dukuh Tapak Kelurahan Tugurejo Kota Semarang. Life Science 5(2):87-94.

Husain, R. 2022. The influence of clay minerals on soil plasticity (Case study on weathering of claystone). IJEScA 9(2):49-54.

Kadir, S., and Karakas, Z. 2002. Mineralogy, chemistry and origin of halloysite, kaolinite and smectite from Miocene ignimbrites, Konya, Turkey. Neues Jahrbuch Fur Mineralogie, Abhandlungen 177(2):113-132, doi:10.1127/0077-7757/2002/0177-0113.

Kallenbach, C.M., Frey, S.D. and Grandy, A.S. 2016. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications 7, doi:10.1038/ncomms13630.

Kramarenko, V.V., Nikitenkov, A.N., Matveenko, I.A., Molokov, V.Y. and Vasilenko, Y.S. 2016. Determination of water content in clay and organic soil using microwave oven. IOP Conference Series: Earth and Environmental Science 43(1), doi:10.1088/1755-1315/43/1/012029.

Nayanaka, V.G.D. and Mapa, R.B. 2014. Use of Atterberg limits for structure and tillage management of five great soil groups of Sri Lanka. Natural Sciences 18(371):430.

Panjaitan, S.R.N. dan Mahyuzar, M. 2020. Pengaruh pemeraman terhadap nilai kuat kuat tekan tanah lempung Sungai Serdang Batang Kuis Deli Serdang dengan penambahan abu cangkang sawit. JCEBT 4(1):31-38.

Polidori, E. 2007. Relationship between the atterberg limits and clay content. Soils and Foundations 47(5):887-896, doi:10.3208/sandf.47.887.

Rahmaniah, Reskywijaya, Ayu. S.W. dan Harsoni, J. 2020. Analisis mineral tanah rawan longsor menggunakan X-Ray diffraction di Desa Sawaru Kabupaten Maros. Geoscience Review 2(1):41-49.

Salle, K.M. dan Hendra, R.O.B.A.S. 2015. Pemeriksaan kekuatan tanah dengan menggunakan geotextil berlapis (studi kasus: ring road). Tekno 13(63):33-42.

Schlichting, E., Blume, H.P. and Stahr, K. 1995. Bosdenkundliches Praktikum: Eine Einfuhrung in pedologisches Arbeiten for Okologen, insbesondere Land- und Forstwirte, und fur Geowissenschaftler (2., neuber). Blackwell Wissenschafts-verlag Berlin.

Schumann, W. 1991. Mineralien aus aller Welt. BLV Bestimmungsbuch (2 ed.). p. 223. ISBN 978-3-405-14003-8.

Skempton, A.W. 1953. The Colloidal “Activity” of Clays. Proceeding 3rd International Conference on Soil Mechanics and Foundation Engineering, Zurich 1:57-61, doi:10.1680/sposm.02050.0009.

Steiakakis, E., Gamvroudis, C. and Alevizos, G. 2012. Kozeny-Carman equation and hydraulic conductivity of compacted clayey soils. Geomaterials 2:37-41.

Syofiani, R., Santi, D.P. dan Nike, K. 2020. Karakteristik sifat tanah sebagai faktor penentu potensi pertanian di Nagari Silokek Kawasan Geopark Nasional. Agrium.17(1):1-6.

Tangketasik, A., Wikarniti, N.M., Soniari, N.N. dan Narka, I.W. 2012. Kadar bahan organik tanah pada tanah sawah dan tegalan di Bali serta hubungannya dengan tekstur tanah. Agrotop 2(2):101-107.

Wilson, M.J. 2004. Weathering of the primary rock-forming minerals: processes, products and rates. Clay Minerals 39(3):233-266, doi:10.1180/0009855043930133.

Winarto, A.K., Max, R.M. dan Pudjiono, W.P. 2015. Hubungan antara tekstur vertikal sedimen dengan bahan organik dan keanekaragaman makrobentos di Muara Sungai Tuntang Morodemak. Maquares 4(1):55-63.

Wiqoyah, Q., Renaningsih, dan Indrawan, B.A. 2014. Pemanfaatan Kapur dan Fly Ash untuk Peningkatan Nilai Parameter Geser Tanah Lempung dengan Variasi Lama Perawatan. Simposium Nasional RAPI XIII-2014 FT UMS. Universitas Muhammadiyah Surakarta. Surakarta.

Zolfaghari, Z., Mosaddeghi, M.R., Ayoubi, S. and Kelishadi, H. 2015. Soil atterberg limits and consistency indices as influenced by land use and slope position in Western Iran. Journal of Mountain Science 12(6):1471-1483, doi:10.1007/s11629-014-3339-z.

Downloads

Published

01-07-2023

Issue

Section

Articles

How to Cite

Zulfa, N. I., & Bowo, C. (2023). TEKSTUR DAN BAHAN ORGANIK TANAH SERTA HUBUNGANNYA DENGAN BATAS ATTERBERG DAN AKTIVITAS LIAT. Jurnal Tanah Dan Sumberdaya Lahan, 10(2), 327-334. https://doi.org/10.21776/ub.jtsl.2023.010.2.16

Similar Articles

1-10 of 235

You may also start an advanced similarity search for this article.