PENGARUH MIKORIZA TERHADAP PENYAKIT LAYU FUSARIUM (Fusarium oxysporum) PADA TEMBAKAU (Nicotiana tabacum L.) DALAM MEDIA PASIR KUARSA MENGANDUNG KOMPOS AMB-P0K

Dony Firman Fajariza, Anton Muhibuddin, Antok Wahyu Sektiono

Abstract


Sand is one of the planting media, but the use of sand as a planting medium is still rare due to the low nutrient content. Quartz sand needs the addition of compost to support plant growth. Mycorrhiza can also be added to the growing media. Mycorrhiza is a soil fungus that can symbiosis with the host plant's roots and has a broad influence on pathogenic microorganisms. Mycorrhiza can also increase secondary metabolites in plants.  The compound which is the initial signal for plants to form secondary metabolites is salicylic acid. This research aimed to investigate effect mycorrhiza increase plant growth, the content of salicylic acid and reduce the attack of F. oxysporum fungi that cause Fusarium wilt in tobacco plants. This experiment used a completely randomized design with mycorrhiza dose treatment consisting of 6 treatments that are Control (Soil), M0 (AMB-P0K + 0 g polybag-1) M1 (AMB-P0K + 10 g polybag-1), M2 (AMB-P0K + 20 g polybag-1), M3 (AMB-P0K + 30 g polybag-1), M4 (AMB-P0K + 40 g polybag-1) with each treatment consisting of 5 replications. The results showed that AMB-P0K + mycorrhiza was significant at plant height, number of leaves, leaf area, disease index, pathogen incubation and SA contain.


Keywords


AMB-P0K; Fusarium wilt; mycorrhiza; quartz sand

Full Text:

PDF

References


Boureima, S., Diouf M., Diop, T.A., Diatta, M., Leye, E.M., Ndiaye, F. and Seck, D. 2007. Effects of arbuscular mycorrhiza inoculation on the growth and the development of sesame (Sesamum indicum L.) African Journal of Agricultural Research 3 (3): 234-238.

Et alAkhtar, M.S. and Siddiqui, Z. A. 2008. Arbuscular Mycorrhiza Fungi as Potential Bioprotectants Against Plant Patogens. In: Mycorrhizae: Sustainable Agriculture and Forestry. Siddiqui, Z.A (eds). Aligarh Muslim University. India. pp 61-97.

Febriani, W., Riniarti, M. dan Surnayanti. 2017. Penggunaan berbagai media tanam daninokulasi spora untuk meningkatkan kolonisasi ektomikoriza dan pertumbuhan Shorea javanica. Jurnal Sylva Lestari 5(3): 87-94.

Gao, H., Beckman, C.H. and Muller, W.C. 1994. The rate of vascular colonization as a measure of the genotype interaction between various cultivars of tomato and various formae or races of Fusarium oxysporum. Physiological and Molecular Plant Pathology 46 (1): 29–43.

Garcia, K. and Zimmermann, S.D. 2014. The role of mycorrhiza associations in plant potassium nutrition. Plant Science 5: 1–9.

Guo, Q.S., Chen, L.T. and Liu, Z.Y. 2010. Study on influence of arbuscular mycorrhiza fungi on Pinellia ternata yield and chemical composition. Zhongguo Zhong Yao Za Zhi 35(3):333–338.

Hasanah, U., Purnomowati, dan Dwiputranto, U. 2007. Pengaruh inokulasi mikoriza vesikula arbuskula (MVA) campuran terhadap kemunculan penyakit layu fusarium pada tanaman tomat (Solanum lycopersicum). Jurnal Scripta Biologica 4(1): 31-35.

Jin, H.R., Liu, J. and Huang, X.W. 2012. Forms of nitrogen uptake, translocation, and transfer via arbuscular mycorrhiza fungi: a review. China Life Science 55 (6): 474–482.

Kaur, R., Singh A., Kang, J.S. 2014. Influence of Different Types Mycorrhiza Fungi on Crop Productivity. Current Agriculture Research Journal 2 (1): 51-54.

Kumar, V. and Almomin, S. 2018. Plant defense against pathogens: the role of salicylic acid. Journal of Biotechnology 13(12): 97-103.

Leghari, S.J., Wahocho N.A., Laghari, M.G., Laghari, H.F., Bhabhan, G.M., Talpur, K.H., T.A., Wahocho, A. and Lashari, A.A. 2016. Role of nitrogen for plant growth and development: a review. Advances in Enviromental Biology 10(9): 209-218.

Malhotra, H., Vandana, S. Sharma, R. and Pandey, R. 2018. Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess. In: Plant Nutrients and Abiotic Stress Tolerance. Hasanuzzaman, M., Fujita M., Oku H., Nahar Kamrun., Nowak B (eds). Indian Agricultural Research Institute. India. pp 171-190

Mandal, S., Mallick, N. and Mitra, A. 2009. Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiology Biochemical 47(7): 642-9.

Muhibuddin, A. 2018. Spesifikasi Kandungan Nutrisi Kompos. Unwaha Press.

Pieterse, C.M., Leon, R.A, Van, D.E.S. and Wees, V. 2009. Networking by small‐molecule hormones in plant immunity. Nature Chemical Biology 5: 308– 316.

Plassard, C. and Dell ,B. 2010. Phosphorus nutrition of mycorrhiza trees. Tree Physiology 30 (9): 1129–1139.

Pozo, M.J. and Aguilar, A.C. 2007. Unraveling mycorrhiza induced resistance. Current Opinion in Plant Biology 10 (4): 393-398.

Prajapati, K. and Modi, H.A. 2012. The importance of potassium in plant growth – a review. Indian Journal of Plant Sciences 1(02): 177-186.

Pratiwi, Santoso, E. dan Turjaman, M. 2012. Penentuan dosis bahan pembenah (ameliorant) untuk perbaikan tanah dari tailing pasir kuarsa sebagai media tumbuh tanaman hutan. Jurnal Penelitian Hutan dan Konservasi Alam 9 (2): 163-174.

Quiroga, M., Guerrero, C., Botella, M.A., Barcelo, A., Amaya, I., Medina, M.I., Alonso, F.J., Forchetti, S.M., Tigier, H., Valpuesta, V. 2000. A Tomato Peroxidase Involved in the Synthesis of Lignin and Suberin. Plant Physiology 122(4): 1119 – 1127.

Shah, J., Tsui, F. and Klessig, D.F. 1997. Characterization of a salicylic acid-intensive mutant of Arabidopsis thaliana, identified in a selective screen utilizing the sa-inducible expression of the TMS2 Gene. Plant Microbe Interact 10(1): 69-78.

Suprapto, S.J. 2007. Tailing Sebagai Sumberdaya. Kementerian ESDM Pusat Sumberdaya Geologi.

Valentine, K., Herlina, N. dan Aini, N. 2017. Pengaruh pemberian mikoriza dan Trichoderma sp. terhadap pertumbuhan dan hasil produksi benih melon hibrida (Cucumis melo L.). Jurnal Produksi Tanaman 5(7): 1085-1092.

Videira, S.S., Oliveira, D.M., Morais, R.F., Borges, W.S., Baldani, V.L.D. and Baldani, J.I. 2012. Genetic diversity and plant growth promoting traits of diazotrophic bacteria isolated drom two Pennisetum Purpureum Schum. genotypes grown in the field. Plant and Soil 356(1): 51-66.

Vlot, A.C., Dempsey D.M.A. and Klessig D.F. 2009. Salicylic acid, multiefected hormone to combat disease. Annual Review Phytopathology 47(1): 177–206.

Wang ,J., Fu, Z., Ren, Q., Zhu, L., Lin, J., Zhang, J., Cheng, X., Ma, J. and Yue, J. 2019. Effects of arbuscular mycorrhiza fungi on growth, photosynthesis, and nutrient uptake of Zelkova serrata (Thunb.) makino seedlings under salt stress. Forest Article 10(2):1-16.

Widjayanti, K.S. 2007. Pengaruh rizobakteri dalam meningkatkan kandungan asam salisilat dan total fenol tanaman terhadap penekanan nematoda puru akar. Buletin Tanaman Tembakau, Serat & Minyak Industri 9(2): 57-62.

Yang ,Y, Ou, X., Yang, G., Xia, Y., Chen, M., Guo, L. and Liu, D. 2017. Arbuscular mycorrhiza fungi regulate the growth and phyto-active compound of salvia miltiorrhiza seedlings. Applied Science 7(1): 68-82.

Zhang, R.Q., Zhu, H.H., Zhao, H.Q. and Yao, Q. 2013. Arbuscular mycorrhiza fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. Journal of Plant Physiology 170(1): 74-79.

Zubek. S., Rola K., Szewczyk, A., Majewska, M.L. and Turnau, K. 2015. Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhiza fungi. Plant Soil 390(1):129–142.




DOI: http://dx.doi.org/10.21776/ub.jtsl.2020.007.1.5

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Dony Firman Fajariza, Anton Muhibuddin, Antok Wahyu Sektiono

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.