EKSPLORASI FUNGI MIKORIZA ARBUSKULA PADA TINGKAT KELERENGAN LAHAN BERBEDA DI LAHAN KONSERVASI TANAMAN NANAS LOKAL

Indonesia

Authors

  • Muhammad Fahyu Sanjaya Program Studi Agroekoteknologi, Fakultas Pertanian dan Kehutanan, Universitas Sulawesi Barat https://orcid.org/0000-0002-4669-7208
  • Ihsan Arham Program Studi Agroekoteknologi, Fakultas Pertanian dan Kehutanan, Universitas Sulawesi Barat https://orcid.org/0009-0000-8337-4013
  • Sri Sukmawati Program Studi Agroekoteknologi, Fakultas Pertanian dan Kehutanan, Universitas Sulawesi Barat
  • Irlan Program Studi Kehutanan, Fakultas Pertanian dan Kehutanan, Universitas Sulawesi Barat
  • Kurniati Program Studi Agroekoteknologi, Fakultas Pertanian dan Kehutanan, Universitas Sulawesi Barat
  • Abd Rukman Burhan Program Studi Agroekoteknologi, Fakultas Pertanian dan Kehutanan, Universitas Sulawesi Barat

DOI:

https://doi.org/10.21776/ub.jtsl.2025.012.1.13

Keywords:

Fungi Mikoriza Arbuskula, kelerangan, konservasi lahan, nanas lokal

Abstract

This study aimed to explore the characteristics of Arbuscular Mycorrhizal Fungi (AMF) across varying land slope gradients in the conservation area of local pineapple plantations in Majene Regency. The analysis was conducted on five slope categories: flat (0-8%), gentle (8-15%), moderately steep (15-25%), steep (25-45%), and very steep (>45%), to examine the spore density and morphology of AMF as well as to see its relationship to ecological factors such as climate and topography. The results revealed that slope gradients significantly influenced AMF spore density, with the highest density observed on moderately steep and steep slopes. In contrast, lower densities were recorded on flat, gentle, and very steep slopes. Four AMF spore genera were identified: Glomus, Acaulospora, Gigaspora, and Scutellospora. Glomus was dominant across all slopes, Acaulospora was more prevalent on moderate slopes, and Gigaspora preferred steep slopes. Scutellospora was detected in limited quantities on extreme slopes. Environmental factors, including stable temperatures (27.61 °C-27.77 °C), high relative humidity (79.44%-80.41%), and varying precipitation levels, influenced AMF spore distribution and morphology. These findings emphasize the critical role of topography and climate in supporting AMF sustainability in management strategies to conserve AMF biodiversity and enhance crop productivity.

References

Abarca, M., Parker, A. L., Larsen, E. A., Umbanhowar, J., Earl, C., Guralnick, R., Kingsolver, J., & Ries, L. (2024). How development and survival combine to determine the thermal sensitivity of insects. PLoS ONE, 19(1 January), 1–14. https://doi.org/10.1371/journal.pone.0291393

Brundrett, M. (2004). Diversity and classification of mycorrhizal associations. Biological Reviews of the Cambridge Philosophical Society, 79(3), 473–495. https://doi.org/10.1017/S1464793103006316

Brundrett, M. C. (2017). Global Diversity and Importance of Mycorrhizal and Nonmycorrhizal Plants. October, 533–556. https://doi.org/10.1007/978-3-319-56363-3_21

Cai, J., Cheng, W., Liang, Z., Li, C., Deng, Y., Yin, T., & Li, C. (2023). Organic and Slow-Release Fertilizer Substitution Strategies Improved the Sustainability of Pineapple Production Systems in the Tropics. Sustainability (Switzerland), 15(13). https://doi.org/10.3390/su151310353

Davarzani, H., Smits, K., Tolene, R. M., & Illangasekare, T. (2014). Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface. Water Resources Research, 50(1), 661–680. https://doi.org/10.1002/2013WR013952

Deng, X., Lian, P., Zeng, M., Xu, D., & Qi, Y. (2021). Does farmland abandonment harm agricultural productivity in hilly and mountainous areas? evidence from China. Journal of Land Use Science, 16(4), 433–449. https://doi.org/10.1080/1747423X.2021.1954707

Dietrich, P., Roscher, C., Clark, A. T., Eisenhauer, N., Schmid, B., & Wagg, C. (2020). Diverse plant mixtures sustain a greater arbuscular mycorrhizal fungi spore viability than monocultures after 12 years. Journal of Plant Ecology, 13(4), 478–488. https://doi.org/10.1093/jpe/rtaa037

Du, S., Trivedi, P., Wei, Z., Feng, J., Hu, H.-W., Bi, L., Huang, Q., & Liu, Y.-R. (2022). The Proportion of Soil-Borne Fungal Pathogens Increases with Elevated Organic Carbon in Agricultural Soils. MSystems, 7(2). https://doi.org/10.1128/msystems.01337-21

Duvaleix, S., Lassalas, M., Latruffe, L., Konstantidelli, V., & Tzouramani, I. (2020). Adopting environmentally friendly farming practices and the role of quality labels and producer organisations: A qualitative analysis based on two european case studies. Sustainability (Switzerland), 12(24), 1–16. https://doi.org/10.3390/su122410457

Faghihinia, M., Halverson, L. J., Hršelová, H., Bukovská, P., Rozmoš, M., Kotianová, M., & Jansa, J. (2023). Nutrient-dependent cross-kingdom interactions in the hyphosphere of an arbuscular mycorrhizal fungus. Frontiers in Microbiology, 14(January), 1–19. https://doi.org/10.3389/fmicb.2023.1284648

Jia, R. L., Li, X. R., Liu, L. C., Gao, Y. H., & Zhang, X. T. (2012). Differential wind tolerance of soil crust mosses explains their micro-distribution in nature. Soil Biology and Biochemistry, 45, 31–39. https://doi.org/10.1016/j.soilbio.2011.09.021

Johnson, L. J. A. N., Gónzalez-Chávez, M. del C. A., Carrillo-González, R., Porras-Alfaro, A., & Mueller, G. M. (2021). Vanilla aerial and terrestrial roots host rich communities of orchid mycorrhizal and ectomycorrhizal fungi. Plants People Planet, 3(5), 541–552. https://doi.org/10.1002/ppp3.10171

Kalamulla, R., Dayasena, Y. A. P. K., Stephenson, S. L., Tibpromma, S., Chen, X.-M., Yapa, N., & Karunarathna, S. C. (2024). Roles of mycorrhizal fungi in phytoremediation of contaminated eco-systems. New Zealand Journal of Botany, 1–18. https://doi.org/10.1080/0028825X.2024.2326850

Lara-Capistran, L., Zulueta-Rodriguez, R., Murillo-Amador, B., Preciado-Rangel, P., Verdecia-Acosta, D. M., & Hernandez-Montiel, L. G. (2021). Biodiversity of am fungi in coffee cultivated on eroded soil. Agronomy, 11(3). https://doi.org/10.3390/agronomy11030567

Luo, C., Li, Z., Shi, Y., Gao, Y., Xu, Y., Zhang, Y., & Chu, H. (2024). Arbuscular mycorrhizal fungi enhance drought resistance in (Bombax ceiba) by regulating SOD family genes. PeerJ, 12, e17849. https://doi.org/10.7717/peerj.17849

Manjarrez, M., Christophersen, H. M., Smith, S. E., & Smith, F. A. (2010a). Cortical colonisation is not an absolute requirement for phosphorus transfer to plants in arbuscular mycorrhizas formed by Scutellospora calospora in a tomato mutant: evidence from physiology and gene expression. Functional Plant Biology, 37(12), 1132. https://doi.org/10.1071/FP09248

Manjarrez, M., Christophersen, H. M., Smith, S. E., & Smith, F. A. (2010b). Cortical colonisation is not an absolute requirement for phosphorus transfer to plants in arbuscular mycorrhizas formed by Scutellospora calospora in a tomato mutant: evidence from physiology and gene expression. Functional Plant Biology, 37(12), 1132. https://doi.org/10.1071/FP09248

Masebo, N., Birhane, E., Takele, S., Belay, Z., Lucena, J. J., Pérez-Sanz, A., & Anjulo, A. (2023). Diversity of Arbuscular Mycorrhizal fungi under different agroforestry practices in the drylands of Southern Ethiopia. BMC Plant Biology, 23(1), 634. https://doi.org/10.1186/s12870-023-04645-6

Matos, S., Viardot, E., Sovacool, B. K., Geels, F. W., & Xiong, Y. (2022). Innovation and climate change: A review and introduction to the special issue. Technovation, 117, 102612. https://doi.org/10.1016/j.technovation.2022.102612

Meena, N. K., Gautam, R., & Tiwari, P. (2017). Nutrient losses in soil due to erosion. Journal of Pharmacognosy and Phytochemistry, 1009–1011.

Mendonca, A. De. (2013). “ Agribusiness Essential for Food Security : Empowering Youth and Enhancing Quality Products ” Investigation of the effects of rainfall ( Climate Change ) on pineapple production in Essequibo Tri-Lakes Area. West Indies Agricultural Economics Conference, 1–10.

Mukhlis, Noer, M., Nofialdi, & Mahdi. (2018). The Integrated Farming System of Crop and Livestock: A Review of Rice and Cattle Integration Farming. International Journal of Sciences: Basic and Applied Research (IJSBAR) International Journal of Sciences: Basic and Applied Research, 42(3), 68–82.

P. Udawatta, R., Rankoth, L., & Jose, S. (2019). Agroforestry and Biodiversity. Sustainability, 11(10), 2879. https://doi.org/10.3390/su11102879

Redecker, D., Stockinger, H., S, A., L, S., M, J., & W, C. (2013). An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorhiza, 23, 515–531. https://doi.org/https://doi.org/10.1007/s00572-013-0486-y

Saikanth, D. R. K., Supriya, Singh, B. V., Rai, A. K., Bana, S. R., Sachan, D. S., & Singh, B. (2023). Advancing Sustainable Agriculture: A Comprehensive Review for Optimizing Food Production and Environmental Conservation. International Journal of Plant & Soil Science, 35(16), 417–425. https://doi.org/10.9734/ijpss/2023/v35i163169

Salvador, G. L. O., Araujo, F. F., Pereira, A. P. de A., Bonifacio, A., & Araujo, A. S. F. (2022). Rhizobacteria and arbuscular mycorrhizal fungus presented distinct and specific effects on soybean growth when inoculated with organic compost. Rhizosphere, 22, 100513. https://doi.org/10.1016/j.rhisph.2022.100513

Sanjaya, M. F., Arham, I., Irlan, I., Mahendra, Y., & Irwansyah, I. (2024). KARAKTERISASI INDIKATOR KESESUAIAN LAHAN KOMODITI NANAS LOKAL (Ananas comosus) KABUPATEN MAJENE. Jurnal Tanah Dan Sumberdaya Lahan, 11(1), 223–232. https://doi.org/10.21776/ub.jtsl.2024.011.1.24

Smith & Read. (2008). Mycorrhizal Symbiosis. In 2010 Academic Press (Ed.), third edition (3rd ed., Vol. 3).

Stevens, B. M., Propster, J. R., Öpik, M., Wilson, G. W. T., Alloway, S. L., Mayemba, E., & Johnson, N. C. (2020). Arbuscular mycorrhizal fungi in roots and soil respond differently to biotic and abiotic factors in the Serengeti. Mycorrhiza, 30(1), 79–95. https://doi.org/10.1007/s00572-020-00931-5

Stürmer, S. L., & Kemmelmeier, K. (2021). The Glomeromycota in the Neotropics. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.553679

Sui, X., Li, M., Frey, B., Dai, G., Yang, L., & Li, M. (2023). Effect of elevation on composition and diversity of fungi in the rhizosphere of a population of Deyeuxia angustifolia on Changbai. April, 1–10. https://doi.org/10.3389/fmicb.2023.1087475

Tisserant, A., Morales, M., Cavalett, O., O’Toole, A., Weldon, S., Rasse, D. P., & Cherubini, F. (2022). Life-cycle assessment to unravel co-benefits and trade-offs of large-scale biochar deployment in Norwegian agriculture. Resources, Conservation and Recycling, 179(November 2021), 106030. https://doi.org/10.1016/j.resconrec.2021.106030

Tsybulka, M. M., Zhukova, I. I., & Yukhnovets, A. V. (2022). В Беларуси установлено более 20 видов и форм деградации почвенно-земельных ресурсов и основной. 24(476), 84–93.

Tuheteru, F. D., & Wu, Q.-S. (2017). Arbuscular Mycorrhizal Fungi and Tolerance of Waterlogging Stress in Plants. In Arbuscular Mycorrhizas and Stress Tolerance of Plants (pp. 43–66). Springer Singapore. https://doi.org/10.1007/978-981-10-4115-0_3

Tzimopoulos, C., Samarinas, N., Papadopoulos, K., & Evangelides, C. (2023). Fuzzy Unsteady-State Drainage Solution for Land Reclamation. Hydrology, 10(2). https://doi.org/10.3390/hydrology10020034

Verzeaux, J., Nivelle, E., Roger, D., Hirel, B., Dubois, F., & Tetu, T. (2017). Spore Density of Arbuscular Mycorrhizal Fungi is Fostered by Six Years of a No-Till System and is Correlated with Environmental Parameters in a Silty Loam Soil. Agronomy, 7(2), 38. https://doi.org/10.3390/agronomy7020038

Wang, L., George, T. S., & Feng, G. (2024). Concepts and consequences of the hyphosphere core microbiome for arbuscular mycorrhizal fungal fitness and function. New Phytologist, 242(4), 1529–1533. https://doi.org/10.1111/nph.19396

Wang, Q., Liu, M., Wang, Z., Li, J., Liu, K., & Huang, D. (2024). The role of arbuscular mycorrhizal symbiosis in plant abiotic stress. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1323881

Wang, X. Q., Wang, Y. H., Song, Y. Bin, & Dong, M. (2022). Formation and functions of arbuscular mycorrhizae in coastal wetland ecosystems: A review. Ecosystem Health and Sustainability, 8(1). https://doi.org/10.1080/20964129.2022.2144465

Wei, Z., Sixi, Z., Xiuqing, Y., Guodong, X., Baichun, W., & Baojing, G. (2023). Arbuscular mycorrhizal fungi alter rhizosphere bacterial community characteristics to improve Cr tolerance of Acorus calamus. Ecotoxicology and Environmental Safety, 253, 114652. https://doi.org/10.1016/j.ecoenv.2023.114652

Williams, P. A., Crespo, O., Atkinson, C. J., & Essegbey, G. O. (2017). Impact of climate variability on pineapple production in Ghana. Agriculture and Food Security, 6(1), 1–14. https://doi.org/10.1186/s40066-017-0104-x

Wilmowicz, E., Kućko, A., Bogati, K., Wolska, M., Świdziński, M., Burkowska-But, A., & Walczak, M. (2022). Glomus sp. and Bacillus sp. strains mitigate the adverse effects of drought on maize (Zea mays L.). Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.958004

Zhang, S., Lehmann, A., Zheng, W., You, Z., & Rillig, M. C. (2019). Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytologist, 222(1), 543–555. https://doi.org/10.1111/nph.15570

Downloads

Published

01-01-2025

Issue

Section

Articles

How to Cite

EKSPLORASI FUNGI MIKORIZA ARBUSKULA PADA TINGKAT KELERENGAN LAHAN BERBEDA DI LAHAN KONSERVASI TANAMAN NANAS LOKAL: Indonesia. (2025). Jurnal Tanah Dan Sumberdaya Lahan, 12(1), 127-137. https://doi.org/10.21776/ub.jtsl.2025.012.1.13

Similar Articles

1-10 of 188

You may also start an advanced similarity search for this article.