KLASIFIKASI WILAYAH RISIKO BENCANA BANJIR DI KOTA SEMARANG DENGAN PERHITUNGAN INDEKS VEGETASI
DOI:
https://doi.org/10.21776/ub.jtsl.2023.010.2.29Keywords:
flood, NDVI, NDWI, SAVI, vegetation indexAbstract
Land use in an area is influenced by population growth and activities. Changes in land use continuously will cause environmental changes that often trigger an increase in natural disasters. In this study, the assessment was carried out using the calculation of the Normalized Difference Vegetation Index (NDVI), Normalized Difference Wetness Index (NDWI) and Soil Adjusted Vegetation Index (SAVI). The data used came from Landsat OLI 8 imagery data from 2020 to 2023. The results of this study showed that in the range of 2020 to 2023 the changes in the three calculations of the vegetation index were not significant. From the data obtained, the classification for calculations in the rainy and dry seasons was the same, the NDVI vegetation index obtained high vegetation, the SAVI vegetation index obtained forested vegetation, and the NDWI vegetation index obtained high wetness. Overall the assessment of the vegetation index obtained good results, and it can be concluded that not all areas in Semarang City are at risk of flooding, even during the rainy season.
Downloads
References
Balai, E. S., Agroklimat, P., Hidrologi, D., Tentara, J., & No, P. (n.d.). Pemantauan dan Peringatan Dini Kekeringan Pertanian di Indonesia Monitoring and Early Warning of Agricultural Drought in Indonesia.
de Freitas, F. V., Gomes, M. V. M., & Winkler, I. (2022, February 1). Benefits and Challenges of Virtual-Reality-Based Industrial Usability Testing and Design Reviews: A Patents Landscape and Literature Review. Applied Sciences (Switzerland), Vol. 12. MDPI. https://doi.org/10.3390/app12031755
Erlani, R., & Nugrahandika, W. H. (2019). Ketangguhan Kota Semarang dalam Menghadapi Bencana Banjir Pasang Air Laut (Rob). Journal of Regional and Rural Development Planning, 3(1), 47. https://doi.org/10.29244/jp2wd.2019.3.1.47-63
Ikhsyan, N., Muryani, C., & Rintayati, P. (2017). Analysis of Distribution, Impacts and Adaptation Societies Flood Rob in the Eastern District of Semarang and Semarang Gayamsari District (Vol. 3).
Kebencanaan, K., Nasional, B., & Bencana, P. (n.d.). INDEKS RISIKO BENCANA INDONESIA DITERBITKAN OLEH : Tahun 2021.
Kevin, V., Que, S., Prasetyo, Y. J., & Fibriani, C. (n.d.). Analisis Perbedaan Indeks Vegetasi Normalized Difference Vegetation Index (NDVI) dan Normalized Burn Ratio (NBR) Kabupaten Pelalawan Menggunakan Citra Satelit Landsat 8.
Kumalawati dan Farida Angriani Prodi Geografi, R., Ips, J., UNLAM dan Pusat Studi Kebencanaan UNLAM, F., Selatan, K., Banjir di Kabupaten Hulu Sungai Tengah Kalimantan Selatan frekuensinya semakin meningkat setiap tahunnya Sehingga perlu dilakukan, I., Risiko Bencana Banjir di Kabupaten Hulu Sungai Tengah Kalimantan Selatan, P., … Pemetaan Risiko Bencana Banjir di Kabupaten Hulu Sungai Tengah Kalimantan Selatan, melakukan. (n.d.). PEMETAAN RISIKO BENCANA BANJIR DI KABUPATEN HULU SUNGAI TENGAH ABSTRAK Banjir adalah bencana yang terjadi pada setiap tahun dan pada musim hujan termasuk di.
Laurensz, B., Lawalata, F., Yulianto, S., & Prasetyo, J. (n.d.). Potensi Resiko Banjir dengan Menggunakan Citra Satelit (Studi Kasus : Kota Manado, Provinsi Sulawesi Utara).
Lestari, M., Yulianto Joko Prasetyo, S., Fibriani, C., Teknologi Informasi, F., & Sistem Informasi Universitas Kristen Satya Wacana, M. (n.d.-a). Analisis Daerah Rawan Banjir Pada Daerah Aliran Sungai Tuntang Menggunakan Skoring dan Inverse Distance Weighted.
Lestari, M., Yulianto Joko Prasetyo, S., Fibriani, C., Teknologi Informasi, F., & Sistem Informasi Universitas Kristen Satya Wacana, M. (n.d.-b). Analisis Daerah Rawan Banjir Pada Daerah Aliran Sungai Tuntang Menggunakan Skoring dan Inverse Distance Weighted.
Rauf, M. S., Dantje, I., Runtulalo, M. T., & Ode, C. R. (n.d.). ANALISIS TATA GUNA LAHAN BERBASIS GIS MENGGUNAKAN CITRA LANDSAT 8 DI KABUPATEN ENREKANG.
Yudistira, R., Meha, A. I., Yulianto, S., & Prasetyo, J. (n.d.). Perubahan Konversi Lahan Menggunakan NDVI, EVI, SAVI dan PCA pada Citra Landsat 8 (Studi Kasus : Kota Salatiga).
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Jurnal Tanah dan Sumberdaya Lahan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The copyright of the received article shall be assigned to the journal as the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.