AUTOMATIC PALM COUNTING DENGAN METODE TEMPLATE MATCHING (STUDI KASUS DI UNIVERSITAS SAMUDRA)

Authors

  • Agusman Program Studi Agroteknologi, Fakultas Pertanian, Universitas Samudra
  • Iswahyudi Program Studi Agroteknologi, Fakultas Pertanian, Universitas Samudra https://orcid.org/0000-0001-8551-3128
  • Iwan saputra Program Studi Agroteknologi, Fakultas Pertanian, Universitas Samudra

DOI:

https://doi.org/10.21776/ub.jtsl.2025.012.1.18

Keywords:

citra drone, kelapa sawit, template matching, pemetaan otomatis

Abstract

The oil palm land donated to Universitas Samudra is planned for the development of the campus area, including the construction of a number of buildings and supporting facilities. However, the process of identifying and mapping oil palm plants has been done manually, which is time-consuming, inefficient, and prone to errors. This problem underscores the need for faster and more accurate methods to support spatial data-based planning. This study aimed to calculate the number of oil palm plants in 2022 and 2023 at the University of Samudra using the template matching method with eCognition Developer software, as well as evaluate the accuracy of automatic detection results based on aerial images obtained using drones. The research was carried out using survey methods and descriptive analysis, involving primary data in the form of aerial imagery and field validation, as well as secondary data from the map of the oil palm plantation area of Samudra University. The results of the study show that the number of oil palm plants in 2022 based on automatic calculations was 2,060 trees, while the results of manual validation showed the actual number of 2,169 trees with a difference of 109 trees. In 2023, the automatic calculation detected 1,932 trees, while the actual number was 2,030 trees, with a difference of 98 trees. The accuracy level of automatic calculations in 2022 had an average accuracy of 98.56%, recall of 94.05%, and F1-score of 95.63%, higher than in 2023 with precision of 97.41%, recall of 92.73%, and F1-score of 94.98%. Then the template matching method is effectively used for oil palm tree detection and can support the planning of campus area development efficiently. The use of this technology is expected to be a model that can be implemented in various other educational institutions.

References

Abikindo. (2010). Template Matching. Retrieved Oktober 3, 2018, from https://abikindo.blogspot.co.id/2010/06/template-matching.

Adi, A. P., Prasetyo, Y., Yuwono, B. D. 2017. Pengujian Akurasi dan Ketelitian Planimetrik pada Pemeaan Bidang Tanah Pemukiman Skala Besar Menggunakan Wahana Unmanned Aerial Vehicle (UAV). Jurnal Geodesi Undip, 6 (1): 208-217.

Amin, Z., Meldi, D. 2018. Pengidentifikasian dan Pencarian Manusia Berbasis Citra Menggunakan Unmanned Aerial Vehicle. METAL: Jurnal Sistem Mekanik dan Termal, 2(2): 50-60. https://doi.org/10.25077/metal.2.2.50-60.2018

Arbain, A. N., Balakrishnan, B. Y. P. 2019. A Comparison of Data Mining Algorithms for Liver Disease Prediction on Imbalanced Data. International Journal of Data Science and Advanced Analytics, 1(1): 1-11. https://doi.org/10.69511/ijdsaa.v1i1.2

Armanto, D.Y., Hudjimartsu, S.A., Hermawan, E. 2024. Identifikasi Perhitungan Pohon Kelapa Sawit Otomatis Dengan Menggunakan Metode Convolutional Neural Network (CNN). (Jurnal Mahasiswa Teknik Informatika) Vol. 8 No. 3, hal: 2648-2654. https://doi.org/10.36040/jati.v8i3.9525

Bakara, J. 2014. Sistem Majemen Data Citra Satelit Penginderaan Jauh Resolusi Tinggi untuk Kebutuhan Nasional. Paper presented at the Seminar Nasional Penginderaan Jauh.

Chong, K. L., Kanniah, K. D., Pohl, C., dan Tan, K. P. 2017. A Review of Remote Sensing Applications for Oil Palm Studies. Geo-spatial Information Science, 20(2), 184-200. https://doi.org/10.1080/10095020.2017.1337317

Ernawa, Y. G. 2020. Perhitungan Pohon Pada Perkebunan Kelapa Sawit Menggunakan Software Trimble eCognition Developer Dari Citra Foto Udara (Studi Kasus: Muara Bengkal, Kutai Timur, Kutai Kartanegara, Kalimantan Timur). Doctoral Dissertation Institut Teknologi Nasional Malang.

Galih, Y. E., Tjahjadi, E.M., Yulianandha, M.A., Arafah, F. 2021. Analisis Kemampuan eCognition Dalam Deteksi Objek. Prosiding Semsina 2020. 29 - 32.

Gunawan, R., Putra, E. K., Setiawan, M. A., Mustakim, H. U. 2020. Pengembangan Unmanned Aerial

Vehicle (UAV) Melalui Pengaplikasian Jaringan 5G. Lomba Karya Tulis Ilmiah, 1(1): 61-67.

Irsanti, D., Sasmito, B., Bashit, N. 2019. Kajian Pengaruh Penajaman Citra Untuk Penghitungan Jumlah Pohon Kelapa Sawit Secara Otomatis Menggunakan Foto Udara (Studi Kasus : KHG Bentayan Sumatra Selatan) . Jurnal Geodesi Undip 9(2) hal:429-434.

Kosasi, S. 2016. Pembuatan Sistem Informasi Geografis Berbasis Web Untuk Persebaran Lokasi Apotek. CSRID (Computer Science Research and Its Development Journal), 8(2): 99-108. https://doi.org/10.22303/csrid.8.2.2016.99-108

Mabrur, A.Y dan F. Arafah., 2021. Analisa Perbandingan Object Counting Dengan eCognition dan Picterra. Jurnal Geografi. Prodi Teknik Geodesi Institut Teknologi Nasional Malang. https://doi.org/10.23887/em.v2i1.33347

Mahalakshmi, T., Muthaiah, R., Swaminathan, P. 2012. Image Processing. Research Journal of Applied Sciences, Engineering and Technology, 4(24), 5469- 5473.

Natan, O., Gunawan, A. I., Dewantara, B. S. B. 2019. Grid SVM: Aplikasi Machine Learning dalam Pengolahan Data Akuakultur. Jurnal Rekayasa Elektrika, 15(1). https://doi.org/10.17529/jre.v15i1.13298

PTPN (PT Perkebunan Nusantara). 2021. PT Perkebunan Nusantara I [Online]. Langsa: PTPN I. [Accesed 12 Mei 2022].

Reviyansyah, R., Wahyudiono, S., Yuniasih, B. 2018. Studi Analisis Pengelolaan Perkebunan Kelapa Sawit Berbasis Gis. Jurnal Agromast , Vol.3, No.1, hal: 1-17.

Saputra, R. 2021. Sistem Informasi Geografis Perkebunan Kelapa Sawit Menggunakan NDVI Pada PTPN V Provinsi Riau. Universitas Islam Negeri Sultan Syarif Kasim Riau.

Tjahjadi, M. E., dan Rifaan, M., 2019. Foto Udara Menggunakan Unmanned Aerial Vehicle (Uav) Untuk Pemodelan 3D Jalan Raya. Teknik Geodesi Institut Teknologi Nasional, Malang.

Utami, D., Fazlina, D.Y., Sugianto. 2022. Automatic Palm Counting Menggunakan Citra Resolusi Spasial Tinggi. Jurnal Ilmiah Mahasiswa Pertanian. 7(2): 621 - 626. https://doi.org/10.17969/jimfp.v7i2.18990

Downloads

Published

01-01-2025

Issue

Section

Articles

How to Cite

AUTOMATIC PALM COUNTING DENGAN METODE TEMPLATE MATCHING (STUDI KASUS DI UNIVERSITAS SAMUDRA). (2025). Jurnal Tanah Dan Sumberdaya Lahan, 12(1), 183-196. https://doi.org/10.21776/ub.jtsl.2025.012.1.18

Similar Articles

1-10 of 54

You may also start an advanced similarity search for this article.